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ABSTRACT 
Aspects have the potential to interact with many different kinds of 
language constructs in order to modularize crosscutting concerns. 
Although the initial Java-based aspect languages have 
demonstrated advantages of applying aspects to traditional object-
oriented hierarchies, additional language concepts (e.g., 
parametric polymorphism) can also benefit from a synergy with 
aspects. Many popular languages already support parametric 
polymorphism (e.g., C++ templates), and other languages are 
soon to adopt the idea. With the acceptance of JSR-14, which 
brings generics to Java, investigation into the combination of 
aspects and generics will become more important. This paper 
presents a program transformation approach for weaving 
crosscutting concerns into template libraries. The core of the 
paper demonstrates the approach as applied to a large open-source 
C++ template library for scientific computing. 
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1 INTRODUCTION 
The majority of research in the area of aspect-oriented 
programming (AOP) has focused on application to languages that 
support inheritance and subtype polymorphism (e.g., Java). There 
is potential benefit for applying the AOP concepts to other forms 
of polymorphism, such as parametric polymorphism [4], as found 
in languages that support templates or generics (e.g., C++ and 
Ada). Aspects have the capability to improve the modularization 
of crosscutting concerns that cannot be separated otherwise in 
large template libraries. The ability to weave into templates offers 
an additional degree of adaptation and configuration beyond that 
provided by parameterization alone. 

With the addition of generics1 to Java in JSR-14 [18], it is 
expected that the application of aspects to parametric 
polymorphism will become a more focused research objective. 
However, the topic has not received much attention in the existing 
research literature. The most detailed discussion on the topic can 
be found in [17], within the context of the AspectC++ project 
[26]. The effort to add aspects to templates in AspectC++ has 
been partitioned along two complimentary dimensions: 1) 
weaving advice into template bodies; 2) using templates in the 
bodies of aspects. The initial AspectC++ work is focused on the 
second dimension (templates in the advice body). The 

                                                                 
1 Throughout the remainder of this paper, the term template is 

used to refer to the general concept of parametric polymorphism 
(even though the word generic is used in the Java community). 

contribution of our paper is a deeper investigation into the first 
dimension of advice weaving into the template implementation. 

There are numerous issues that arise from applying AOP to 
parametric polymorphism. A key challenge occurs from the 
realization that a template is instantiated in multiple places, yet it 
may be the case that the crosscutting feature is required in only a 
subset of those instances. A language is needed to define the 
subset, and an appropriate copy semantics is required to separate 
weaved templates from the base implementation of the library. 
Furthermore, in addition to the transformation of the template 
library itself, the program that instantiates the library may also 
need to be altered according to the types of weaving performed on 
the base code of the library. These issues are discussed in detail in 
the paper through example case studies. 

The technique presented is a source to source translation that 
utilizes a program transformation system to perform the lower-
level adaptation that adds a crosscutting feature to a template 
implementation. In a different context [9], we applied program 
transformation technology to construct an aspect weaver for 
Object Pascal. This paper extends that work to C++ in order to 
address the challenges of parsing and transforming complex 
templates. Although the focus of the paper is on the low-level 
transformations, peripheral comments are made regarding the 
design of an aspect language that provides better abstraction of 
the accidental complexities of the low-level transformations 
pertaining to template weaving. 

Scientific computing was an initial application domain for AOP 
[11]. However, aside from an application of AspectJ [14] to an 
implementation of JavaMPI [10], AOP has not been applied or 
investigated deeply within the area of scientific computing. This 
is primarily due to the fact that such applications are typically 
written in FORTRAN, C, or C++, but a focus of AOP research 
has been applied to Java-based implementations. Nevertheless, 
there is a strong potential for impact if aspects can be used to 
improve the modularization of libraries tailored for parallel 
computation. Scientific computing applications written in C++ 
rely heavily on template libraries that are specialized for 
mathematical operations on vectors, arrays, and matrices [24]. 
Our paper makes a contribution by applying aspects to a case 
study of a well-known scientific computing library. 

The next section contains an overview of the key concepts of 
template weaving, and provides a solution technique applied to a 
small case study. In Section 3, a popular open-source library for 
scientific computing serves as the context for discussion of 
crosscutting concerns that exist in template libraries. Section 4 
provides comparison to related work. A conclusion offers 
summary remarks and a description of future efforts. 



2 TEMPLATE WEAVING IN STL 
This section introduces a short example that has been constructed 
to highlight several of the essential concepts of weaving into 
templates. An application of the STL vector class is presented, 
along with a description of a program transformation technique 
for weaving a crosscutting concern into vector instances. 

2.1 An Introductory Example:  
STL Vector Class 

The Standard Template Library (STL) [13] is a general-purpose 
C++ library that provides many data structures and algorithms 
(e.g., containers, iterators, algorithms, function objects and 
allocators). STL embraces the idea of generic programming, 
which describes the implementation of algorithms or data 
structures in a type-independent manner. This section 
demonstrates a technique to weave cross-cutting concerns into 
applications referencing STL classes, in particular, the STL vector 
class is chosen as an initial proof of concept. A fragment of the 
vector template class definition is provided in the left-hand part of 
Listing 1. 

As common with any vector class definition, it provides basic 
operations such as, pushing an element onto the end of the vector, 
popping an element off the end of the vector, returning the size of 
the vector etc. This particular code however shows only the 
push_back method that in succession calls insert_aux to 
insert an element x at the end of the vector.  

The sample code in the right-hand part of Listing 1 illustrates the 
use of a vector in an application program. In this short example, 
three different types of vector instances are declared (i.e., vectors 

of type int, char, and float). Each vector instance invokes 
the push_back method to insert an element. In particular, three 
<int> and one <float> type vector declarations are 
instantiated in class A while each of <char>, <int> and 
<float> vector type are declared in class B.  

Considering the canonical (almost clichéd) logging example, 
suppose that important data in specific vector instances needs to 
be recorded whenever the contents are changed. Within the 
context of an STL vector, a requirement may state that logging is 
to occur for all items added to each invocation of the 
push_back method, but only for specific specializations. For 
example, it may be desired to log every new element of type int 
when inserted into the end of an int vector. In order to affect 
only int instances of vector and leave the other types (e.g., 
float, double etc) of vectors unaltered, the intuitive idea 
is to make a copy and rename the original vector template class 
(e.g., vector_copy).  

The logging statement can then be weaved into the push_back 
method of the vector_copy template class. The copy of the 
vector class fragment is shown at the top of Listing 2. 

Furthermore, in addition to the library, the source code of the user 
application must also be updated to reference the new 
vector_copy class in the appropriate places. In this case, all of 
the declaration statements of vector<int> in the application 
will now reference vector_copy<int>. Middle of Listing 2 
illustrates the corresponding changes to the user application. Note 
that all other vector references and specializations are left 
unaltered. 

1 template <class T> 
2 class vector{  
3 //... 
4  
5 public: 
6 void push_back(const T& x ) { 
7 // insert element at end 
8   if (finish !=    
9        end_of_storage){   
10        construct(finish, x); 
11        finish++; 
12      } else 
13        insert_aux(end(), x); 
14     } 
15  } 
16 void pop_back() {  
17 // erase element at end 
18   if (!empty()) 
19    erase(end() - 1); 
20 } 
21  //... 
22 // other implementation     

details omitted here 
23 };  
 

 

 

1 class A { 
2 vector<int> ai; 
3 void foo() { 
4    vector<int> fi1; 
5    vector<int> fi2; 
6    vector<float> ff; 
7    //... 
8    ai.push_back(1); 
9    fi1.push_back(2); 
10    fi2.push_back(3); 
11    ff.push_back(4.0); 
12    //... 
13    } 
14 };      
 
1 class B { 
2 vector<char> bc; 
3 void bar() { 
4    vector<int> bi; 
5    vector<float> bf; 
6    //... 
7    bc.push_back('a'); 
8    bi.push_back(1); 
9    bf.push_back(2.0); 

10    //... 
11    } 
12 };  

Listing 1. STL Vector Class and its specializations



2.2 An Aspect Language for Templates 
The previous section described a manual process for adding a 
logging concern into specific instantiations of a vector. In this 
sub-section, we describe the design of a higher level AspectJ-like 
language for weaving concerns into templates.  

As discussed in section 2.1, there may be the need for multiple 
template instantiations to have slightly different implementations. 
For example, within application specific instances of the vector 
class there may be subtle points of variability necessary in a 
specific vector instance (e.g., logging as in this case). To 
characterize this behavior, Table 1 illustrates the scoping rules in 
the pointcut specification language. 
Firstly, let us step back to Listing 2 to see how the newly defined 
scoping rules get reflected in the application instances (i.e. in 
class A and class B). At the bottom of that listing two pointcut 
specifications are shown which primarily updates the vector 
references in class A and class B. The pointcut on the bottom-left 
of listing 2 means that for method Foo defined in class A update 
“all” int vectors to capture the logging property as defined in the 
push_back method. The pointcut on the bottom-right of listing 2 
means that for method Bar defined in class B update only the “bi” 
int vector to capture the logging property as defined in the 
push_back method. 
 

 

Table 1. The scope representation in pointcut specifications 

Designator Description 

C:* 
All template instantiations within the 
declaration of class C, which are not local 
instantiations in any methods of C 

* C.*(..):* 
All local template instantiations within all 
methods of class C 

(C:*  || * C.*(..):*) All template instantiations within class C 

* C.M(..):* All local template instantiations within 
method M of class C 

* C.*(..):I Any template instantiation that is named I, in 
all methods of class C 

* C.M(..):I Local template instantiation I, in method M of 
class C 

 

To show further, how this new scoping rule can affect the 
weaving of the logging concern as described in section 2.1, a few 
more examples are provided in Listings 3 through 7. Each 
pointcut definition is progressively more focused in limiting the

1 template <class T> 
2 class vector_copy {  
3 ...       
4 public: 
5 void push_back(const T& x ) { 
6 log.add(x); 
7 if (finish != end_of_storage) {   
8      construct(finish, x); 
9      finish++; 
10   }  else 
11      insert_aux(end(), x);  
12 }  
13 ……… 

1 class A { 
2 vector<int> ai; 
3 void foo() { 
4      vector_copy<int> fi1; 
5      vector_copy<int> fi2; 
6      vector<float> ff; 
7      //...  
8 } 
9 }; 

1 class B { 
2 vector<char> bc; 
3 void bar() { 
4      vector_copy<int> bi; 
5      vector<float> bf; 
6      //...  
7    } 
8 }; 

1 pointcut push_back_method(): 
2 execution( 
3   A.Foo(..):*<- 
4      vector<int>::push_back(..));  

1 pointcut push_back_method(): 
2 execution( 
3   B.bar(..):bi<- 
4       vector<int>::push_back(..));  

Listing 2. STL Vector copy class and updated references in the application instances 



scope of the join points that are captured (i.e., from a pointcut that 
captures all vectors of any type in any class, down to a pointcut 
that specifies a specific instance in a distinct method). Listing 3 
demonstrates an example of the aspect language to add the 
logging statement to the push_back method in all vectors of 
any type. The pointcut push_back_method() represents the 
points of execution where weaving is to occur. Vector<*> is 
used to denote that weaving is performed on all types of vector 
instances. Therefore, for this aspect specification, the 
corresponding low level implementation (i.e., by using DMS rule 
specification language) would make a copy of the whole vector 
class definition (e.g., named as vector_copy), and insert the 
log.add(x) statement at the beginning of its push_back 
method. Correspondingly, every reference to the original vector 
instantiation in the application program will now reference the 
vector_copy instantiation. 

1 aspect InsertPushBackLogToAllVector { 
2     
3   pointcut push_back_method(): 
4     execution(vector<*>::push_back(..));    
5    
6   before():push_back_method() { 
7     log.add(x); 
8   } 
9 } 

Listing 3. Aspect specification for inserting the push_back 
log to all vectors of ANY type in ANY class 

 

Listing 4 defines a pointcut that specifies the execution join point 
for the push_back method of all vectors of type int. The low 
level implementation involving DMS Rules can capture this same 
intention and will be shown in the following section. 

1 pointcut push_back_method(): 
2   execution(vector<int>::push_back(..));  

Listing 4. Pointcut specification for weaving into all 
vectors of type int in ANY class 

 

To add finer granularity, Listing 5 describes the pointcut 
specification for weaving into all vectors of type int in class A. 
To be more specific in limiting the scope of a pointcut, Listing 6 
defines a pointcut capturing all int vectors in method Foo that 
are in class A. Listing 7 is the most specific pointcut; it will only 
weave into a particular instance variable fi1 whose type is an 
int vector. 

1 pointcut push_back_method(): 
2   execution( 
3     (A:*  || * A.*(..):*)<- 
4               vector<int>::push_back(..)); 

Listing 5. Pointcut specification for weaving into all 
vectors of type int in class A 

 

1 pointcut push_back_method(): 
2   execution( 
3     * A.Foo(..):*<- 
4               vector<int>::push_back(..)); 

Listing 6. Pointcut specification for weaving into all 
vectors of type int in class A::Foo 

 

1 pointcut push_back_method(): 
2   execution( 
3     * A.Foo(..):fi1<- 
4               vector<int>::push_back(..)); 

Listing 7. Pointcut specification for weaving into 
int vector fi1 in class A::Foo 

 

2.3 Weaving Concerns into STL – An     
          Automated approach using DMS 
The aspect specification shown in the previous section forms the 
high level specification language to perform the weaving. In this 
sub-section we will demonstrate the low level implementation 
details used to automate the weaving process by using a program 
transformation engine, namely the Design Maintenance System.  
2.3.1 The Design Maintenance System 
The Design Maintenance System (DMS) [1] is a program 
transformation system and re-engineering toolkit developed by 
Semantic Designs (www.semdesigns.com). The core component 
of DMS is a term rewriting engine that provides powerful pattern 
matching and source translation capabilities. In DMS teminology, 
a language domain represents all of the tools (e.g., lexer, parser, 
pretty printer) for performing translation within a specific 
programming language. DMS provides pre-constructed domains 
for several dozen languages. 

The DMS Rule Specification Language (RSL) provides basic 
primitives for describing numerous transformations that are to be 
performed across the entire code base of an application. The RSL 
consists of declarations of patterns, rules, conditions, and rule sets 
using the external form (concrete syntax) defined by a language 
domain. Typically, a large collection of RSL files, like those 
represented in Listing 8 and Listing 9, are needed to describe the 
full set of transformations. Patterns describe the form of a syntax 
tree. They are used for matching purposes to find a syntax tree 
having a specified structure. Patterns are often used on the right-
hand side (target) of a rule to describe the resulting syntax tree 
after the rule is applied. The RSL rules describe a directed pair of 
corresponding syntax trees. A rule is typically used as a rewrite 
specification that maps from a left-hand side (source) syntax tree 
expression to a right-hand side (target) syntax tree expression. 
Rules can be combined into sets of rules that together form a 
transformation strategy by defining a collection of 
transformations that can be applied to a syntax tree. The patterns 
and rules can have associated conditions that describe restrictions 
on when a pattern legally matches a syntax tree, or when a rule is 
applicable on a syntax tree.  

In addition to the RSL, a language called PARLANSE is available 
in DMS. Transformation functions can be written in PARLANSE 
to traverse and manipulate the parse tree at a finer level of 
granularity than that provided by RSL transformations rules. 
PARLANSE is a functional language whose programs can be tied 
to transformation rules as external patterns to provide deeper 
structural transformation. 

The DMS rules, along with the corresponding PARLANSE code, 
represent the low-level transformations on the base STL library 
while the aspect specification represents a higher level of 
abstraction that hides the unnecessary details (i.e., the primitive 
transformations are too low-level for widespread adoption) from 



the underlying implementation. Figure 1 presents an overview of 
an automated process for template weaving. As shown in the 
bottom of this figure, the low-level rules along will their 
corresponding binding with the higher-level aspect specification 
will act on the target STL source to necessitate the behavioral 
changes in them. 
Two core engines are involved in the implementation: one is the 
translator, whose intent is to parse and translate a high-level 
aspect language into low-level transformation rules (i.e., item 
numbers 5 and 6); another is the DMS transformation engine, 
which will take the source files and the generated rules as input, 
and transform the source files based on the rule specifications. 
The user provides three different source files as input to the 
process: the original STL source code (shown as item #1 in Figure 
1), an application program based on the STL (shown as item #2), 
and an AspectJ-like language specification (examples shown in 
Section 2.2) that is used to describe the specific pointcuts and 
advice for template weaving. The translator engine includes a 
lexer, parser, pattern evaluator (i.e., pattern parser and attribute 
evaluator) that takes the aspect specification and instantiates two 
different sets of parameterized transformation rules (i.e., STL 
copy rules and App transformation rules, shown separately as #5 
and #6 in Figure 1). The pattern instantiation process is similar to 
our previous work on building an aspect domain for ObjectPascal 
[9]. The STL copy rules make a copy of the original STL 
template and weaves in the new concerns by use of the STL-RSL 
Binding in the transformation engine. As a result, several different 
copies of STL templates will be generated, each of which has one 
specific concern weaved into its base definition (shown as #3). 
Likewise, the App-RSL Binding transformation modifies the user 
application program (shown as #2) based on the App 

transformation rules, and generates the new application (shown as 
#4) that is able to be compiled and executed along with the 
generated STL copies. 
The remaining parts of Section 2 will introduce a detailed 
discussion of transformation rules used for implementing the 
template weaving concepts. 
2.3.2 Transformation Rules for Template Weaving 
Listing 8 shows the low level RSL specification for weaving a 
logging concern into the push_back method in an STL vector 
class. Two steps are involved in the weaving process: make a 
copy of the vector template class, and insert the logging statement 
into appropriate placeholders in the abstract syntax tree. The first 
line in the rule snippet establishes the default base language 
domain to which the DMS rules are applied (in this case, Visual 
C++ 6.0 is used). Pattern log_statement in lines 3 and 4 
represents the log statement that will be inserted before the 
execution of the push_back method. Pattern 
weaved_method_name in lines 6 and 7 defines the name of 
the method that will be transformed (i.e., push_back in this 
case). Pattern new_template_name in lines 9 and 10 specifies 
the new name for the copied vector (e.g., vector_copy). In 
DMS, exit functions (i.e. external patterns and functions) are 
written in PARLANSE, which is a parallel language for symbolic 
expressions. It provides an enriched set of API’s for performing 
various operations on the abstract syntax tree. In this example the 
external pattern 
copy_template_add_log_to_pushback_method is 
implemented in PARLANSE cwhich does the actual process of 
copying, renaming, and weaving. The external pattern takes four 
input parameters: a template declaration to be operated on, a 
statement sequence representing the advice, a method name where 

Figure 1. Overview of Template Weaving Process 



the advice is to be weaved, and a new name for the template copy. 
Due to limited space, the PARLANSE code is omitted here (all of 
the transformation code, papers, and videos are available on the 
GenAWeave project web page at 
http://www.cis.uab.edu/gray/Research/GenAWeave). The rule 
insert_log_to_template on line 22 triggers the 
transformation on the vector class by invoking the specified 
external pattern. Notice that there is a condition associated with 
this rule (line 30), which describes a constraint stating that the 
rule should be applied only once. After applying this rule to the 
code fragment (i.e.,vector.h) shown in Listing 1, a new 
template class named vector_copy will be generated with the 
logging statement inserted at the beginning of the push_back 
method (i.e., the automated result is the same as found in Listing 
2). 

However, due to the low level nature of the rule specification 
language, software developers are not expected to write rules in 
this manner, rather the aspect language mentioned in section 2.2 
and its corresponding binding with the RSL would drive the 
weaving. Developers can specify the join point and pointcut using 
the aspect specification and underlying implementations would be 
then instantiated oblivious to them.  

1 default base domain Cpp~VisualCpp6. 
2  
3 pattern log_statement():  
4   statement_seq = "log.add(x);". 
5  
6 pattern weaved_method_name(): 
7   identifier = "push_back". 
8  
9 pattern new_template_name(): 
10   identifier = "vector_copy". 
11  
12 external pattern 
13   copy_template_add_log_to_pushback_method 
14     ( td : template_declaration, 
15       st : statement_seq, 
16       method_name : identifier,  
17       template_name : identifier ):  
18   template_declaration =  
19   'copy_template_add_log_to_pushback_method'  
20   in domain Cpp~VisualCpp6.  
21       
22 rule insert_log_to_template 
23   ( td : template_declaration ):  
24   template_declaration ->   
25   template_declaration 
26 = td                   ->     
27   copy_template_add_log_to_pushback_method 
28   (td, log_statement(), 
29   weaved_method_name(),new_template_name())    
30 if td ~=    
31    copy_template_add_log_to_pushback_method  
32    (td, log_statement(), 
33   weaved_method_name(),new_template_name()). 
34      
35 public ruleset applyrules = 
36   { insert_log_to_template  }. 

Listing 8. DMS transformation rules for weaving  
log statement into push_back method 

 

The weaving process is still not complete as the application 
program also needs to be updated to reference to this new 
vecor_copy instance. The DMS transformation rule specification 
for updating the corresponding application program is specified in 
Listing 9. Pattern pointcut (line 3) identifies the condition 
under which the rule will be applied (e.g., all int vector 

declarations ). Pattern advice (line 7) defines the name of the 
new transformed function (e.g., vector_copy). The external 
pattern replace_vector_instance performs the actual 
transformation implementation in PARLANSE. After applying 
this particular rule to a user application, every instance vector 
declared as int will be transformed into an instance of 
vector_copy. 
 

1 default base domain Cpp~VisualCpp6. 
2  
3 pattern pointcut( id : identifier ):  
4   declaration_statement = 
5     "vector<int> \id;". 
6  
7 pattern advice( id : identifier ):  
8   declaration_statement = 
9     "vector_copy<int> \id;". 
10  
11 external pattern replace_vector_instance 
12   ( cd  : class_declaration, 
13     ds1 : declaration_statement, 
14     ds2 : declaration_statement ):  
15   class_declaration =  
16     'replace_vector_instance'  
17   in domain Cpp~VisualCpp6.  
18  
19 rule replace_template_instance 
20   ( cd : class_declaration, 
21     id : identifier):  
22   class_declaration ->  
23   class_declaration 
24 = cd  ->  replace_vector_instance 
25             (cd,pointcut(id),advice(id))  
26 if cd ~=  replace_vector_instance 
27             (cd,pointcut(id),advice(id)). 
28  
29 public ruleset applyrules = 
30   { replace_template_instance }. 

Listing 9. DMS transformation rules for updating the 
application program 

 
2.4 An application using STL – Internet 

Communications Engine 
In this subsection we concentrate on verifying the practical usage 
of the basic concepts developed in the previous section by 
applying it to an open source application, namely the Internet 
Communications Engine (ICE). ICE is an object-oriented 
middleware platform suitable for use in heterogeneous 
environments and supports developments of practical distributed 
applications for a wide variety of domains. It provides tools, APIs 
and libraries for building object-oriented client server 
applications. The reason ICE was chosen to validate the concepts 
developed in section 2.1 was primarily due to its extensive usage 
of the C++ standard template library. The ICE core package 
consists of several hundred C++ classes and is around 155 K 
SLOC in size. 
Although there are several places in the core ICE library that are 
suitable candidates for applying aspect-oriented template 
specializations, here we only illustrate the BasicStream class. The 
BasicStream class consist of several readers and writers and is 
instrumental in implementing several data types (int, float, char, 
long, double, string etc) for communicating between the object 
streams. Obviously the objects need to be type casted to bytes 
before being transmitted as streams. Although this kind of type 
casting operation is not considered as a traditional aspect 



(contrary to logging, error-handling etc) in the AOP world, but 
the fact that this operation cross-cuts the entire stream class 
cannot be ignored. The following piece of code exemplifies the 
problem. 
 

1 ... 
2 IceInternal::BasicStream::write(const  
3              vector<Float>& v) { 
4 Int sz = static_cast<Int>(v.size()); 
5 #ifdef ICE_BIG_ENDIAN 
6   const Byte* src = reinterpret_cast 
7   <const Byte*>(&v[0]) + sizeof(Float) - 1; 
8 // writing to the byte stream (omitted) 
9 #else 
10    memcpy(&b[pos], reinterpret_cast<const  
11        Byte*>(&v[0]), sz * sizeof(Float)); 
12 #endif 
13 } 
14 ... 

Listing 10. Type casting operation for non byte data types  
 
Line 4 and Line 6 illustrates the two cross-cutting concerns which 
are scattered throughout the code base and appears 9 times each 
for every read and write operation. ICE uses its own user defined 
Int data type and needs to know the size of the vector before 
converting it to byte streams (Line 4 shows this case). Both these 
operations could be abstracted as an aspect and could be present 
as a new method in the parent template class. To weave these 
kinds of cross-cutting properties, we would use the inter type 
declaration mechanism (similar to inter type declaration in 
AspectJ), and the code in Listing 11 show the aspect specification 
to do this. 
1 aspect size_typecast { 
2   public Int vectorSize() { 
3      return static_cast<Int>(v.size()); 
4   } 
5   public const Byte* srcFloat() { 
6      reinterpret_cast<const 
7      Byte*>(&v[0]) + sizeof(Float) - 1; 
8     }  
9   public const Byte* srcDouble() { 
10      reinterpret_cast<const   
11      Byte*>(&v[0]) + sizeof(Double) - 1; 
12   } 
13     . . . 
14 } 

Listing 11. Aspect Specification for weaving size and  
type cast operation  

 
Note that the reference in Line 3 and 5 in the source application 
should also be updated to point to this new method declaration 
within the parent template. 

3 ASPECTS IN SCIENTIFIC LIBRARIES 
The previous section presented examples that were contrived to 
illustrate some of the distinct scoping problems that are associated 
during weaving into specific template specializations. In this 
section, focus is given towards modularizing open-source libraries 
written in the scientific computing domain. The contribution 
highlights the crosscutting features on a real case study, and 
describes improved modularization using the template weaving 

idea. In particular, this section focuses on identified aspects in 
Blitz++ [28], a C++ template library that supports high 
performance scientific computing. 

3.1 Background: Crosscutting in Blitz++ 
Optimizing performance, while preserving the benefits of 
programming language abstractions [27, 24, 19], is a major hurdle 
faced in scientific computing. Object-oriented programming 
languages (OOPLs) have popularized useful features (e.g., 
inheritance and polymorphism) in the development of complex 
scientific problems. However, the performance bottleneck 
associated with OOPLs has been a major concern among high-
performance computing (HPC) researchers. Alternatively, 
languages such as FORTRAN have dominated the numerical 
computing domain, even though the primitive programming 
constructs in such languages make applications difficult to 
maintain and evolve. 

Compiler extensions (e.g., High Performance C++ [12] and High 
Performance Java [8]) and scientific libraries (e.g., POOMA [20], 
MTL [22], and BLITZ++ [28]) have been developed to extend the 
benefits of object-oriented programming to the scientific domain. 
In particular, BLITZ++ is a popular scientific package that has 
specific abstractions (e.g., arrays, matrices, and tensors) that 
support parametric polymorphism through C++ templates. The 
goal of the Blitz++ project has been to develop techniques that 
enable C++ to compete or exceed the speed of FORTRAN for 
numerical computing. Blitz++ arrays offer functionality and 
efficiency, but without any language extensions. The Blitz++ 
library is able to parse and analyze array expressions at compile 
time, and perform loop transformations. Blitz++ currently 
provides dense vectors and multidimensional arrays, in addition to  
matrices, random number generators, and tiny vectors. The 
overall size of the Blitz++ library is approximately 115K SLOCs. 
Moreover, there are several additional source code directories that 
serve as benchmarks and test cases. 

Although Blitz++ makes extensive use of templates and generics 
for array and vector implementation, the issue addressed in this 
section is the ability to apply AOP concepts to a large template 
library like Blitz++ using the technique described in section 2. 
This section contains a description of some of the array and vector 
implementation templates in Blitz++, and identifies several 
crosscutting features in the current Blitz++ implementation. The 
majority of the section demonstrates the weaving technique using 
DMS that was introduced in Section 2. The general approach 
could be applied to other languages that support parametric 
polymorphism (e.g., Ada and Java 1.5). 

The first example (Section 3.2) represents the common case of a 
debugging precondition that appears 25 times in the array-
impl.h source header, and in 57 places in resize.cc. An 
additional crosscutting feature in array-impl.h is 
SetupStorage, which is used for initial memory allocation for 
arrays. SetupStorage appears 23 times in both array-impl.h 
and resize.cc. The second example (Section 3.3) is based on 
redundant assertion checks on the lower and upper bounds of an 
array during instantiation. It appears in 46 places in array-
impl.h. This example is similar in concept to the redundant 
assertions that were described by Lippert and Lopes in [16]. 



Section 3.4 examines AOP combined with other generative 
programming techniques [6]. In particular, the section explores 
the various binary and unary operations on vectors that use 
templatized mathematical functions. These functions crosscut the 
vector operations. For example, many mathematical functions 
(e.g., sin, cos, tan, abs) are repeated in numerous places in both 
vecuops.cc and vecbops.cc. Although Blitz++ currently 
generates these templates, an alternative process is shown that 
uses transformation rules to generate the crosscutting 
mathematical functions. In the approach described in Section 3.4, 
over 12K SLOCs are generated using just 14 lines of code in a 
base template. We have identified six additional aspects in the 
Blitz++ library, but space limitations prohibit a complete 
discussion. 

3.2 Precondition and SetupStorage Aspects 
The Blitz++ library has a debugging mode that is enabled by 
defining the preprocessor directive BZ_DEBUG. In this mode, an 
application runs very slowly primarily because Blitz++ does 
several precondition and bounds checking on the array index. 
Under this condition, if an error or fault is detected by the system, 
the program halts and displays an error message. Listing 12 shows 
a sample precondition check for an array implementation. Note 
that the rank of the vector influences the precondition to be 
checked.  

Another aspect that cuts across the array implementation 
boundaries is setupStorage. The method is called to allocate 
memory for any new array. However, any missing length 
arguments will have their value taken from the last argument in 
the parameter list. For example, Array<int,3> A(32,64) 
will create a 32x64x64 array, which is handled by the routine 
setupStorage(). Both the BZPRECONDITION (lines 10 and 
20 of Listing 12) and setupStorage (lines 12 and 22) can be 
individually considered as two different pieces of advice applied 
to the same pointcut (the former as before advice, and the latter as 
after advice).  

1 template<typename T_expr> 
2 _bz_explicit Array 
3              (_bz_ArrayExpr<T_expr> expr); 
4  
5 Array(int length0, int length1,  
6      GeneralArrayStorage<N_rank> storage =  
7      GeneralArrayStorage<N_rank>()) 
8      : storage_(storage) 
9 { 
10      BZPRECONDITION(N_rank >= 2);  
11      // implementation code omitted 
12      setupStorage(1); 
13 } 
14    
15 Array(int length0, int length1, int length2, 
16      GeneralArrayStorage<N_rank> storage = 
17      GeneralArrayStorage<N_rank>()) 
18      : storage_(storage) 
19 { 
20      BZPRECONDITION(N_rank >= 3); 
21      // implementation code omitted 
22      setupStorage(2); 
23 } 
... 

Listing 12. Precondition check and setpupStorage in  
array implementation 

 

With respect to the aspect language design presented in Section 
2.2, Listing 13 contains a simple aspect specification for the 
cross-cutting concern shown in Listing 12. The expression 
statements in BZPRECONDITION and setupStorage form 
part of the before and after advice. The pointcut refers to all 
Array constructors within the Array implementation class. The 
function call tjp.getArgs().length() will return the 
length of the parameter list in the Array constructor. This is a 
special construct which is implemented internally by the 
PARLANSE external function 
generate_paramlist_length defined in Listing 15. 
 
 
15 aspect InsertBZPreCondition_MemAllocation { 
16    
17   pointcut ArrayConstuctor(): 
18     execution(Array<*>::Array(..)); 
19  
20   before(): ArrayConstuctor() 
21     {  BZPRECONDITION(N_rank 
22           >= tjp.getArgs().length());} 
23  
24   after(): ArrayConstuctor() 
25     {  setupStorage( 
26               tjp.getArgs().length()-1);}} 
27 } 
 

Listing 13. Aspect specification for precondition and 
memory allocation in templates 

 

The low level RSL implementation used to weave these features 
is contained in Listing 14. The parameterized rules 
insert_BZPRECONDITION and insert_SetupStorage 
are used to insert the before and after advice for the array 
implementation. Note that there is a marked similarity between 
the two rules, which could be abstracted to form a single rule. 
However, the BZPRECONDITION statement is attached before 
the body of the array implementation, whereas the 
setupStorage statement is attached after the main body. This 
is achieved by the patterns BZPRECONDITIONAspect and 
SetupStorageAspect. The exit functions (i.e., external 
patterns and conditions) are coded in PARLANSE and are used to 
compute the value for the storage and rank parameters. This value 
is derived from the parameter list of the array constructor (e.g., 
Line 5 in Listing 12) as shown in the external function 
generate_paramlist_length in Listing 15. The 
expression_list is generated according to the number of 
parameters. If the first parameter type is int, and array length is 
2, expression statements like (N_rank >= 2) and 
setupStorage(1) will be weaved. Part of the code is 
commented in italics for easy readability. 

The strategy to count the numbers of arguments in a parameter list 
is shown in the listing below. The primary search criterion is 
based on walking the abstract syntax tree seeking for parameter 
declaration list nodes. On successful match, all the children 
belonging to the list are enumerated one by one and the counter is 
incremented. Finally the total length of the argument list returned 
to the caller. 

 

 



1 default base domain Cpp~VisualCpp6. 
2  
3 pattern BZPRECONDITION ():  
4   identifier_or_template_id = BZPRECONDITION".
5  
6 pattern BZPRECONDITIONStmt 
7   (p : para_decl_clause): 
8   expression_statement = 
9   "\BZPRECONDITION \(\)( N_rank >=  
10    \ generate_paramlist_length \(\p\));". 
11  
12 -+ Before advice   
13 pattern BZPRECONDITIONAspect 
14   (p : para_decl_clause, s : statement_seq):  
15   compound_statement =  
16   "{\BZPRECONDITIONStmt\(\p\) { \s }} ". 
17  
18 pattern SetupStorage ():  
19   identifier_or_template_id = "setupStorage". 
20  
21 pattern SetupStorageStmt(p: para_decl_clause): 
22   expression_statement =  
23   "\SetupStorage \(\) 
24   (\generate_paramlist_length \(\p\));". 
25  
26 -+ After advice   
27 pattern SetupStorageAspect 
28   (p : para_decl_clause,  
29    s : statement_seq):  
30   compound_statement =  
31   "{ \s \SetupStorageStmt\(\p\) } ". 
32  
33 external pattern  
34   generate_paramlist_length 
35   (p : para_decl_clause):  
36   INT_LITERAL =  
37   ' generate_paramlist_length '  
38   in domain Cpp~VisualCpp6.  
39  
40 external condition  
41   para_type_is_int(p : para_decl_clause) =  
42   'para_type_is_int'  
43   in domain Cpp~VisualCpp6. 
44  
45 rule insert_SetupStorage 
46   (p : para_decl_clause,  
47    c : ctor_initializer,  
48    s : statement_seq): 
49   function_definition -> function_definition 
50 = "Array (\p) \c { \s } " -> 
51   "Array (\p) \c  
52      {\SetupStorageAspect\(\p \, \s\) }" 
53 if ~[modsList:statement_seq .s matches 
54    "\:statement_seq \SetupStorageAspect\(\p \,
55    \modsList\)"] and para_type_is_int(p). 
56  
57 rule insert_BZPRECONDITION 
58   (p : para_decl_clause,  
59    c : ctor_initializer,  
60    s : statement_seq): 
61   function_definition -> function_definition 
62 = "Array (\p) \c { \s } " -> 
63   "Array (\p) \c  
64      {\ BZPRECONDITIONAspect \(\p \, \s\) }" 
65 if ~[modsList:statement_seq .s matches 
66    "\:statement_seq \ BZPRECONDITIONAspect 
67    \(\p \, \modsList\)"] and  
68    para_type_is_int(p). 
69  
70 public ruleset applyrules = 
71 {   
72    insert_BZPRECONDITION,  
73    insert_SetupStorage 
74 }. 

Listing 14. Weaving precondition and 
storage allocation using RSL 

 

1 (define generate_paramlist_length 
2 (lambda Registry:CreatingPattern 
3    (value (local (;; 
4                                           // local variable declaration omitted 
5                  );; 
6 (;; 
7   (= para_decl_list  
8      (AST:GetFirstChild arguments:1)) 
9   // fetch the last parameter from the array parameter list 
10  (while (== (AST:GetNodeType para_decl_list) 
11               _pp_decl_list)      
12     (;; (+= n) //increase parameter count  
13         (= para_decl_list 
14            (AST:GetFirstChild para_decl_list) 
15     );; 
16   )while 
17   (= literal_num  
18   (AST:CreateNode rep_instance _int_literal)) 
19    // set the parameter count n to the literal value node 
20      (AST:SetNatural literal_num n) 
21   (return literal_num) 
22 );; 
23 ... 
24 )lambda 
25 )define 

Listing 15. PARLANSE function to generate the 
conditional parameter value 

3.3 Redundant Assertion Checking 
Another debugging feature present in Blitz++ checks for the size 
or range of the arrays. For example, Listing 16 shows a 4x4 array 
instantiation and subsequent allocation of floating point values to 
an array index. However, because this is a C-style array, the valid 
index ranges are 0..3 and 0..3; hence, it is an error to refer to an 
invalid index. 

1 int main() 
2 { 
3    Array<complex<float>, 2> Z(4,4); 
4    Z(4,4) = complex<float>(1.0, 0.0); 
5    return 0; 
6 } 

Listing 16. Accessing an invalid array index 

 

1 _bz_bool assertInRange(int BZ_DEBUG_PARAM(i0),
2          int BZ_DEBUG_PARAM(i1)) const 
3 { 
4   BZPRECHECK(isInRange(i0,i1),  
5      "Array index out of range: (" 
6      << i0 << ", " << i1 << ")" 
7      << endl << "Lower bounds: "  
8      << storage_.base() << endl 
9      << "Length: " << length_ << endl);\ 
10   return _bz_true; 
11 } 

Listing 17. Definition of the assertion function 
 

To detect errors in ranges, each array allocation makes an implicit 
call to assertInRange, which checks the lower and upper 
bounds of the array. Listing 17 shows the internal implementation 
of the assertInRange function in Blitz++. 

This particular assertion is defined in all array template 
specifications, according to the general pattern shown in Listing 
18 (the assertInRange aspect in Lines 5 and 12). However, 
note that the number of index parameters passed to the 
assertInRange routine implicitly depends on the size of the 



TinyVector. For example, as presented in Listing 18, to 
allocate a TinyVector of size 1 requires a parameter (i.e., 
index[0]) to be passed to assertInRange. Similarly, for a 
vector of size 2, the range will be checked on index[0], 
index[1]. This type of array specification is repeated 
approximately 46 times in array-impl.h and is context-
dependent on the size of each template container. 

1 template<int N_rank2> 
2 T_numtype operator() 
3      (TinyVector<int,1> index) const 
4 { 
5   assertInRange(index[0]); 
6   return data_[index[0] * stride_[0]]; 
7 } 
8    
9 T_numtype operator() 
10      (TinyVector<int,2> index) const 
11 { 
12   assertInRange(index[0], index[1]); 
13   return data_[index[0] * stride_[0] +  
14                index[1] * stride_[1]]; 
15 }  
16 ... 

Listing 18. Redundant assertion check on 
base template specification 

 

To avoid the crosscutting assertion checking in every definition of 
array implementation, the aspect specification (as defined in 
Listing 19) will weave this concern back into the template code. 
The operation_func pointcut in this specification refers to 
all operation constructors in the array implementation class. The 
special construct tjp.getParameterList is internally 
mapped to a local parlanse function which returns part of the valid 
AST structure observed at this join point.  

1 aspect AssertInRange { 
2   pointcut operator_func(): 
3     execution(Array<*>::operator()(..)); 
4    
5   before(): operator_func() 
6     { 
7      assertInRange(tjp.getParameterList());  
8     } 

Listing 19. Aspect specification for redundant assertion 
checks 

 
 
In the current effort, aspect mining and removal of the original 
crosscutting features was performed manually, although the actual 
weaving back into the base code is automated with the illustrated 
transformations. Future work will explore aspect mining and 
clone detection within the context of templates, but is not a focus 
of this paper. 

The low level RSL implementation of the above aspect is shown 
in Listing 20. The pattern assertInRangeAspect takes 
three parameters; namely, the integer literal that specifies the size 
of the TinyVector, the vector identifier (i.e., index), and the 
statement sequence node where the aspect is to be inserted. The 
expression statement pattern assertInRangeStmt is 
generated by an externally defined pattern (i.e., 
create_expression_list_for_vectorIds), which 
uses an internal PARLANSE specification to generate the 
parameters for the assertInRange function.  

 

1 default base domain Cpp~VisualCpp6. 
2    
3 pattern vectorIdPattern(vectorId: identifier): 
4   identifier = "\vectorId". 
5   
6 external pattern  
7   create_expression_list_for_vectorIds 
8   (n: INT_LITERAL, vectorIdRoot: identifier): 
9   expression_list =  
10   'create_expression_list_for_vectorIds'  
11   in domain  Cpp~VisualCpp6. 
12   
13 pattern  
14  assertInRange_as_id_or_template_id():  
15  identifier_or_template_id = "assertInRange". 
16  
17 pattern assertInRangeStmt 
18   (n:INT_LITERAL, vectorId: identifier):  
19   expression_statement =  
20   "\assertInRange_as_id_or_template_id\(\) 
21   (\create_expression_list_for_vectorIds 
22    \(\n \,\vectorIdPattern\(\vectorId\)\));". 
23    
24 pattern assertInRangeAspect(n : INT_LITERAL,  
25   vectorId: identifier, s: statement_seq): 
26   compound_statement =  
27   "{\assertInRangeStmt\(\n\,\vectorId\){\s}}".
28  
29 rule insert_assertInRange 
30   (n : INT_LITERAL, vectorId : identifier,  
31    c : cv_qualifier_seq, s : statement_seq): 
32   function_definition -> function_definition 
33 = "T_numtype operator() 
34    (TinyVector<int,\n> \vectorId) \c { \s } " 
35 ->"T_numtype operator() 
36    (TinyVector<int,\n> \vectorId) \c  
37      {\assertInRangeAspect\(\n \,  
38       \vectorId \, \s\)}"   
39 if ~[modsList:statement_seq .s matches  
40    "\:statement_seq \assertInRangeAspect\ 
41    (\n \, \vectorId \, \modsList\)"]. 
42  
43 public ruleset applyrules =  
44   {insert_assertInRange}. 

Listing 20. RSL specification showing weaving of 
assertion check to base implementation 

 

3.4 Crosscutting Generic Functions 
This sub-section discusses the combination of AOP with other 
generative programming techniques [6]. In Blitz++, templates 
such as binary and unary operations for arrays and vectors are 
synthesized from a code generator implemented in several C++ 
routines. For consideration in this sub-section, attention is focused 
on a specific set of unary vector operations in a template 
specification, which are generated to the vecuops.cc source 
file in the Blitz++ library. The vecuops.cc file is around 12K 
SLOCs in size; however, most of the mathematical operations 
(e.g., log, sqrt, sin, floor, fmod) have the same syntactic pattern 
structure that can be specified concisely. An analysis of the 
generation process revealed that the entire template specification 
is essentially a cross-product between the set of defined 
mathematical functions (λ) and a base template (β) that represents 
the general pattern structure. In other words, the set of 
mathematical functions crosscut the entire unary vector general 
pattern. 

The mathematical functions supported in Blitz++ vectors can be 
enumerated as λ

1
,λ

2
,...λ

n
, and the base routine representing 

the pattern template structure as β (Listing 21). The code 
generated as the cross-product would be λ

1
β + λ

2
β + λ

3
β 



(i.e., { λ
1
,λ

2
..λ

n
 } × β). The partial string identifier 

OPERATION (highlighted in bold in Listing 21), represents the 
locations in the pattern structure where the mathematical methods 
need to be weaved to generate the entire template specification 
(i.e., the 12k SLOCs in the vecuops.cc file). The concept here 
is somewhat different than standard AOP practice, but the idea of 
a cross-product between a set of mathematical functions and a 
base pattern is germane to the overall process of template 
weaving. Although the example provided in this sub-section is 
based on vector operations using mathematical functions, similar 
situations exist in several other generated template specifications 
in the Blitz++ library. 
 

1 template<class P_numtype1> 
2 inline 
3 _bz_VecExpr<_bz_VecExprUnaryOp<VectorIterConst
4   <P_numtype1>,_bz_OPERATION<P_numtype1> > > 
5      
6 OPERATION(const Vector<P_numtype1>& d1)  
7 { 
8   typedef bz_VecExprUnaryOp<VectorIterConst 
9     <P_numtype1>,_bz_OPERATION<P_numtype1>> 
10   T_expr;  
11  
12   return  
13     _bz_VecExpr<T_expr>(T_expr(d1.begin())); 
14 } 

Listing 21. Subset of base pattern used to generate the 
vector operation template 

 
 

1 default base domain Cpp~VisualCpp6. 
2  
3 pattern aspect_op():identifier = "OPERATION". 
4 pattern aspect_bz_op(): 
5         identifier ="_bz_OPERATION" .   
6    
7 pattern operation1(): identifier ="abs". 
8 pattern operation2(): identifier ="acos". 
9 pattern operation3(): identifier ="acosh". 
10 ... 
11  
12 external pattern     
13   search_aspect_generate_template_code   
14   (td : template_declaration, 
15    id1: identifier, 
16    id2: identifier):  
17   template_declaration =  
18   'search_aspect_generate_template_code'  
19   in domain Cpp~VisualCpp6.  
20    
21 rule generate_vec_template 
22   (td:template_declaration):  
23   declaration_seq -> declaration_seq 
24 = td ->     
25   search_aspect_generate_template_code(td,   
26   aspect_op(), aspect_bz_op(), operation1(),  
27   operation2(), operation3())        
28 if td ~=  
29   search_aspect_generate_template_code(td,   
30   aspect_op(), aspect_bz_op(), operation1(),  
31   operation2(), operation3()). 
32  
33 public ruleset applyrules = 
31 {  
32   generate_vec_template  
33 }. 

Listing 22. Rules showing the concept of applying AOP 
with generative programming 

 

The RSL rule describing the weaving of the mathematical 
functions with the standard routine is shown in Listing 22. The 
right-hand side of the rule specification is an external pattern (i.e., 
search_aspect_generate_template_code in Line 25) 
that takes a list of input parameters. The first parameter is the 
template pattern definition (β). The second and the third 
parameter are the two markers in the base tree that need to be 
replaced with the enumerated mathematical operations. The 
fourth and subsequent parameters are the set of generic 
mathematical functions (operationX()) to be weaved into the  
base pattern. 

4. RELATED WORK 
As noted in the introduction, a discussion of templates and aspects 
in AspectC++ within the context of generative programming is 
discussed in [17]. The focus of the AspectC++ work is on the 
interesting notion of incorporating parametric polymorphism into 
the bodies of advice. In contrast, the focus of our contribution is a 
deeper discussion of the complimentary idea of weaving 
crosscutting features into the implementation of template 
libraries. We chose DMS for our experimentation because of our 
assurance of the ability to parse all of the complex template 
specifications in STL and Blitz++. Many commercial C++ 
compilers do not implement enough of the ISO/ANSI C++ 
standard to compile all of Blitz++. The current publically 
available version of AspectC++ (0.9pre1) is not able to parse 
templates, let alone the complexity found in Blitz++ or the STL. 
As an alternative to DMS, there are several other transformation 
systems that are available (e.g., ASF+SDF [3], TXL [5]) and 
could perhaps offer an alternative platform for the low-level 
transformation rules. With respect to the application of program 
transformation systems to aspect weaving, an investigation was 
described by Fradet and Südholt in an early position paper [7]. In 
similar work, Lämmel [15] discusses the implementation of an 
aspect weaver for a declarative language using functional meta-
programs. 
Within the scientific computing domain, ROSE provides 
optimizations using source to source transformation of ASTs for 
C++ applications [19]. The transformations are expressed using a 
domain-specific language [21]. The type of transformations 
performed by ROSE are focused solely on optimization of 
scientific libraries, and are not applicable to the kinds of 
transformations we advocate in this paper to improve the 
modularization of crosscutting concerns. 

5. CONCLUSION 
Parametric polymorphism provides implementation of common 
algorithms and data structures in a type-independent manner. A 
template is contained in a single specification, but instantiated in 
multiple places within a target application. As shown in Section 2, 
applying aspects to templates raises several issues that are in need 
of investigation. For example, it is most likely that only a subset 
of the instances of a template is related to a specific crosscutting 
feature. In such cases, it would be incorrect to weave a concern 
blindly into all instances of a template. A capability is needed to 
identify and specify those instances that are affected by an aspect, 
and to provide appropriate source transformations that make a 
copy of the original template and weave on each copy. 
The initial focus of the research presented in this paper was to 
expose the issues related to weaving concerns into the C++ 



standard template library. The study proved that the adaptation 
has to be made not only to the template definition, but also to the 
application program that instantiates the template in multiple 
places. The key concept of weaving into template instances was 
experimentally validated by applying the concepts to a popular 
large-scale open source library for scientific computing. The 
scalability issues of such a requirement demanded the availability 
of mature parsers capable of handling several thousand lines of 
complex template specification. However, there remain several 
limitations and open questions to be answered. For example, what 
happens if there are static variables in the template definition? 
Obviously a blind copy would not work there, so certain static 
analysis needs to be done to adapt the approach for such cases. 
There needs to be further study and research in this area and this 
paper is the first of its kind to raise concerns and issues related to 
weaving aspects into template instances.  
Given the tendency of concern-based template adaptation, the 
contribution presented in this paper can be used for other 
programming languages that support parametric polymorphism 
(note: DMS provides mature grammars for several dozen 
languages). For instance, similar issues will arise with adoption of 
generics in Java 1.5, as discussed by Silaghi [23]. Furthermore, a 
contribution of the paper demonstrated the ability to modularize 
crosscutting concerns in scientific libraries. 
The work described in this paper is a modest initial effort that is at 
an early stage in terms of the construction of a concrete aspect 
language to cover all of the different situations of template 
instantiation (as in Table 1). We have developed all of the low-
level transformation rules and associated PARLANSE binaries to 
implement all of the crosscutting examples presented in Sections 
2 and 3. The future work will involve extending the focus to other 
scientific libraries that are implemented in C++ (e.g., POOMA 
[20], MTL [22]). An interesting topic that we will investigate is 
library-independent aspects that may exist within a specific 
domain, such as scientific computing. Because of the availability 
of a mature FORTRAN parser within DMS, we plan to perform 
aspect mining and modularization efforts on large scale scientific 
applications written in FORTRAN that use scientific packages 
such as SCALAPACK [2]. Our collaborators on this future work 
will be researchers at the High Performance Computing 
laboratory at UAB, who helped to pioneer standards within 
scientific and parallel programming (such as the MPI standard 
[25]). 
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