
Weaving into Template Libraries

Suman Roychoudhury, Jing Zhang, and Jeff Gray
University of Alabama at Birmingham

1300 University Boulevard
Birmingham, AL USA 35294

[roychous, zhangj, gray] @ cis.uab.edu

ABSTRACT
Aspects have the potential to interact with many different kinds of
language constructs in order to modularize crosscutting concerns.
Although the initial Java-based aspect languages have
demonstrated advantages of applying aspects to traditional object-
oriented hierarchies, additional language concepts (e.g.,
parametric polymorphism) can also benefit from a synergy with
aspects. Many popular languages already support parametric
polymorphism (e.g., C++ templates), and other languages are
soon to adopt the idea. With the acceptance of JSR-14, which
brings generics to Java, investigation into the combination of
aspects and generics will become more important. This paper
presents a program transformation approach for weaving
crosscutting concerns into template libraries. The core of the
paper demonstrates the approach as applied to a large open-source
C++ template library for scientific computing.

Keywords
Aspects, templates, program transformation, scientific computing

1 INTRODUCTION
The majority of research in the area of aspect-oriented
programming (AOP) has focused on application to languages that
support inheritance and subtype polymorphism (e.g., Java). There
is potential benefit for applying the AOP concepts to other forms
of polymorphism, such as parametric polymorphism [4], as found
in languages that support templates or generics (e.g., C++ and
Ada). Aspects have the capability to improve the modularization
of crosscutting concerns that cannot be separated otherwise in
large template libraries. The ability to weave into templates offers
an additional degree of adaptation and configuration beyond that
provided by parameterization alone.

With the addition of generics1 to Java in JSR-14 [18], it is
expected that the application of aspects to parametric
polymorphism will become a more focused research objective.
However, the topic has not received much attention in the existing
research literature. The most detailed discussion on the topic can
be found in [17], within the context of the AspectC++ project
[26]. The effort to add aspects to templates in AspectC++ has
been partitioned along two complimentary dimensions: 1)
weaving advice into template bodies; 2) using templates in the
bodies of aspects. The initial AspectC++ work is focused on the
second dimension (templates in the advice body). The

1 Throughout the remainder of this paper, the term template is

used to refer to the general concept of parametric polymorphism
(even though the word generic is used in the Java community).

contribution of our paper is a deeper investigation into the first
dimension of advice weaving into the template implementation.

There are numerous issues that arise from applying AOP to
parametric polymorphism. A key challenge occurs from the
realization that a template is instantiated in multiple places, yet it
may be the case that the crosscutting feature is required in only a
subset of those instances. A language is needed to define the
subset, and an appropriate copy semantics is required to separate
weaved templates from the base implementation of the library.
Furthermore, in addition to the transformation of the template
library itself, the program that instantiates the library may also
need to be altered according to the types of weaving performed on
the base code of the library. These issues are discussed in detail in
the paper through example case studies.

The technique presented is a source to source translation that
utilizes a program transformation system to perform the lower-
level adaptation that adds a crosscutting feature to a template
implementation. In a different context [9], we applied program
transformation technology to construct an aspect weaver for
Object Pascal. This paper extends that work to C++ in order to
address the challenges of parsing and transforming complex
templates. Although the focus of the paper is on the low-level
transformations, peripheral comments are made regarding the
design of an aspect language that provides better abstraction of
the accidental complexities of the low-level transformations
pertaining to template weaving.

Scientific computing was an initial application domain for AOP
[11]. However, aside from an application of AspectJ [14] to an
implementation of JavaMPI [10], AOP has not been applied or
investigated deeply within the area of scientific computing. This
is primarily due to the fact that such applications are typically
written in FORTRAN, C, or C++, but a focus of AOP research
has been applied to Java-based implementations. Nevertheless,
there is a strong potential for impact if aspects can be used to
improve the modularization of libraries tailored for parallel
computation. Scientific computing applications written in C++
rely heavily on template libraries that are specialized for
mathematical operations on vectors, arrays, and matrices [24].
Our paper makes a contribution by applying aspects to a case
study of a well-known scientific computing library.

The next section contains an overview of the key concepts of
template weaving, and provides a solution technique applied to a
small case study. In Section 3, a popular open-source library for
scientific computing serves as the context for discussion of
crosscutting concerns that exist in template libraries. Section 4
provides comparison to related work. A conclusion offers
summary remarks and a description of future efforts.

2 TEMPLATE WEAVING IN STL
This section introduces a short example that has been constructed
to highlight several of the essential concepts of weaving into
templates. An application of the STL vector class is presented,
along with a description of a program transformation technique
for weaving a crosscutting concern into vector instances.

2.1 An Introductory Example:
STL Vector Class

The Standard Template Library (STL) [13] is a general-purpose
C++ library that provides many data structures and algorithms
(e.g., containers, iterators, algorithms, function objects and
allocators). STL embraces the idea of generic programming,
which describes the implementation of algorithms or data
structures in a type-independent manner. This section
demonstrates a technique to weave cross-cutting concerns into
applications referencing STL classes, in particular, the STL vector
class is chosen as an initial proof of concept. A fragment of the
vector template class definition is provided in the left-hand part of
Listing 1.

As common with any vector class definition, it provides basic
operations such as, pushing an element onto the end of the vector,
popping an element off the end of the vector, returning the size of
the vector etc. This particular code however shows only the
push_back method that in succession calls insert_aux to
insert an element x at the end of the vector.

The sample code in the right-hand part of Listing 1 illustrates the
use of a vector in an application program. In this short example,
three different types of vector instances are declared (i.e., vectors

of type int, char, and float). Each vector instance invokes
the push_back method to insert an element. In particular, three
<int> and one <float> type vector declarations are
instantiated in class A while each of <char>, <int> and
<float> vector type are declared in class B.

Considering the canonical (almost clichéd) logging example,
suppose that important data in specific vector instances needs to
be recorded whenever the contents are changed. Within the
context of an STL vector, a requirement may state that logging is
to occur for all items added to each invocation of the
push_back method, but only for specific specializations. For
example, it may be desired to log every new element of type int
when inserted into the end of an int vector. In order to affect
only int instances of vector and leave the other types (e.g.,
float, double etc) of vectors unaltered, the intuitive idea
is to make a copy and rename the original vector template class
(e.g., vector_copy).

The logging statement can then be weaved into the push_back
method of the vector_copy template class. The copy of the
vector class fragment is shown at the top of Listing 2.

Furthermore, in addition to the library, the source code of the user
application must also be updated to reference the new
vector_copy class in the appropriate places. In this case, all of
the declaration statements of vector<int> in the application
will now reference vector_copy<int>. Middle of Listing 2
illustrates the corresponding changes to the user application. Note
that all other vector references and specializations are left
unaltered.

1 template <class T>
2 class vector{
3 //...
4
5 public:
6 void push_back(const T& x) {
7 // insert element at end
8 if (finish !=
9 end_of_storage){
10 construct(finish, x);
11 finish++;
12 } else
13 insert_aux(end(), x);
14 }
15 }
16 void pop_back() {
17 // erase element at end
18 if (!empty())
19 erase(end() - 1);
20 }
21 //...
22 // other implementation

details omitted here
23 };

1 class A {
2 vector<int> ai;
3 void foo() {
4 vector<int> fi1;
5 vector<int> fi2;
6 vector<float> ff;
7 //...
8 ai.push_back(1);
9 fi1.push_back(2);
10 fi2.push_back(3);
11 ff.push_back(4.0);
12 //...
13 }
14 };

1 class B {
2 vector<char> bc;
3 void bar() {
4 vector<int> bi;
5 vector<float> bf;
6 //...
7 bc.push_back('a');
8 bi.push_back(1);
9 bf.push_back(2.0);

10 //...
11 }
12 };

Listing 1. STL Vector Class and its specializations

2.2 An Aspect Language for Templates
The previous section described a manual process for adding a
logging concern into specific instantiations of a vector. In this
sub-section, we describe the design of a higher level AspectJ-like
language for weaving concerns into templates.

As discussed in section 2.1, there may be the need for multiple
template instantiations to have slightly different implementations.
For example, within application specific instances of the vector
class there may be subtle points of variability necessary in a
specific vector instance (e.g., logging as in this case). To
characterize this behavior, Table 1 illustrates the scoping rules in
the pointcut specification language.
Firstly, let us step back to Listing 2 to see how the newly defined
scoping rules get reflected in the application instances (i.e. in
class A and class B). At the bottom of that listing two pointcut
specifications are shown which primarily updates the vector
references in class A and class B. The pointcut on the bottom-left
of listing 2 means that for method Foo defined in class A update
“all” int vectors to capture the logging property as defined in the
push_back method. The pointcut on the bottom-right of listing 2
means that for method Bar defined in class B update only the “bi”
int vector to capture the logging property as defined in the
push_back method.

Table 1. The scope representation in pointcut specifications

Designator Description

C:*
All template instantiations within the
declaration of class C, which are not local
instantiations in any methods of C

* C.*(..):*
All local template instantiations within all
methods of class C

(C:* || * C.*(..):*) All template instantiations within class C

* C.M(..):* All local template instantiations within
method M of class C

* C.*(..):I Any template instantiation that is named I, in
all methods of class C

* C.M(..):I Local template instantiation I, in method M of
class C

To show further, how this new scoping rule can affect the
weaving of the logging concern as described in section 2.1, a few
more examples are provided in Listings 3 through 7. Each
pointcut definition is progressively more focused in limiting the

1 template <class T>
2 class vector_copy {
3 ...
4 public:
5 void push_back(const T& x) {
6 log.add(x);
7 if (finish != end_of_storage) {
8 construct(finish, x);
9 finish++;
10 } else
11 insert_aux(end(), x);
12 }
13 ………

1 class A {
2 vector<int> ai;
3 void foo() {
4 vector_copy<int> fi1;
5 vector_copy<int> fi2;
6 vector<float> ff;
7 //...
8 }
9 };

1 class B {
2 vector<char> bc;
3 void bar() {
4 vector_copy<int> bi;
5 vector<float> bf;
6 //...
7 }
8 };

1 pointcut push_back_method():
2 execution(
3 A.Foo(..):*<-
4 vector<int>::push_back(..));

1 pointcut push_back_method():
2 execution(
3 B.bar(..):bi<-
4 vector<int>::push_back(..));

Listing 2. STL Vector copy class and updated references in the application instances

scope of the join points that are captured (i.e., from a pointcut that
captures all vectors of any type in any class, down to a pointcut
that specifies a specific instance in a distinct method). Listing 3
demonstrates an example of the aspect language to add the
logging statement to the push_back method in all vectors of
any type. The pointcut push_back_method() represents the
points of execution where weaving is to occur. Vector<*> is
used to denote that weaving is performed on all types of vector
instances. Therefore, for this aspect specification, the
corresponding low level implementation (i.e., by using DMS rule
specification language) would make a copy of the whole vector
class definition (e.g., named as vector_copy), and insert the
log.add(x) statement at the beginning of its push_back
method. Correspondingly, every reference to the original vector
instantiation in the application program will now reference the
vector_copy instantiation.

1 aspect InsertPushBackLogToAllVector {
2
3 pointcut push_back_method():
4 execution(vector<*>::push_back(..));
5
6 before():push_back_method() {
7 log.add(x);
8 }
9 }

Listing 3. Aspect specification for inserting the push_back
log to all vectors of ANY type in ANY class

Listing 4 defines a pointcut that specifies the execution join point
for the push_back method of all vectors of type int. The low
level implementation involving DMS Rules can capture this same
intention and will be shown in the following section.

1 pointcut push_back_method():
2 execution(vector<int>::push_back(..));

Listing 4. Pointcut specification for weaving into all
vectors of type int in ANY class

To add finer granularity, Listing 5 describes the pointcut
specification for weaving into all vectors of type int in class A.
To be more specific in limiting the scope of a pointcut, Listing 6
defines a pointcut capturing all int vectors in method Foo that
are in class A. Listing 7 is the most specific pointcut; it will only
weave into a particular instance variable fi1 whose type is an
int vector.

1 pointcut push_back_method():
2 execution(
3 (A:* || * A.*(..):*)<-
4 vector<int>::push_back(..));

Listing 5. Pointcut specification for weaving into all
vectors of type int in class A

1 pointcut push_back_method():
2 execution(
3 * A.Foo(..):*<-
4 vector<int>::push_back(..));

Listing 6. Pointcut specification for weaving into all
vectors of type int in class A::Foo

1 pointcut push_back_method():
2 execution(
3 * A.Foo(..):fi1<-
4 vector<int>::push_back(..));

Listing 7. Pointcut specification for weaving into
int vector fi1 in class A::Foo

2.3 Weaving Concerns into STL – An
 Automated approach using DMS
The aspect specification shown in the previous section forms the
high level specification language to perform the weaving. In this
sub-section we will demonstrate the low level implementation
details used to automate the weaving process by using a program
transformation engine, namely the Design Maintenance System.
2.3.1 The Design Maintenance System
The Design Maintenance System (DMS) [1] is a program
transformation system and re-engineering toolkit developed by
Semantic Designs (www.semdesigns.com). The core component
of DMS is a term rewriting engine that provides powerful pattern
matching and source translation capabilities. In DMS teminology,
a language domain represents all of the tools (e.g., lexer, parser,
pretty printer) for performing translation within a specific
programming language. DMS provides pre-constructed domains
for several dozen languages.

The DMS Rule Specification Language (RSL) provides basic
primitives for describing numerous transformations that are to be
performed across the entire code base of an application. The RSL
consists of declarations of patterns, rules, conditions, and rule sets
using the external form (concrete syntax) defined by a language
domain. Typically, a large collection of RSL files, like those
represented in Listing 8 and Listing 9, are needed to describe the
full set of transformations. Patterns describe the form of a syntax
tree. They are used for matching purposes to find a syntax tree
having a specified structure. Patterns are often used on the right-
hand side (target) of a rule to describe the resulting syntax tree
after the rule is applied. The RSL rules describe a directed pair of
corresponding syntax trees. A rule is typically used as a rewrite
specification that maps from a left-hand side (source) syntax tree
expression to a right-hand side (target) syntax tree expression.
Rules can be combined into sets of rules that together form a
transformation strategy by defining a collection of
transformations that can be applied to a syntax tree. The patterns
and rules can have associated conditions that describe restrictions
on when a pattern legally matches a syntax tree, or when a rule is
applicable on a syntax tree.

In addition to the RSL, a language called PARLANSE is available
in DMS. Transformation functions can be written in PARLANSE
to traverse and manipulate the parse tree at a finer level of
granularity than that provided by RSL transformations rules.
PARLANSE is a functional language whose programs can be tied
to transformation rules as external patterns to provide deeper
structural transformation.

The DMS rules, along with the corresponding PARLANSE code,
represent the low-level transformations on the base STL library
while the aspect specification represents a higher level of
abstraction that hides the unnecessary details (i.e., the primitive
transformations are too low-level for widespread adoption) from

the underlying implementation. Figure 1 presents an overview of
an automated process for template weaving. As shown in the
bottom of this figure, the low-level rules along will their
corresponding binding with the higher-level aspect specification
will act on the target STL source to necessitate the behavioral
changes in them.
Two core engines are involved in the implementation: one is the
translator, whose intent is to parse and translate a high-level
aspect language into low-level transformation rules (i.e., item
numbers 5 and 6); another is the DMS transformation engine,
which will take the source files and the generated rules as input,
and transform the source files based on the rule specifications.
The user provides three different source files as input to the
process: the original STL source code (shown as item #1 in Figure
1), an application program based on the STL (shown as item #2),
and an AspectJ-like language specification (examples shown in
Section 2.2) that is used to describe the specific pointcuts and
advice for template weaving. The translator engine includes a
lexer, parser, pattern evaluator (i.e., pattern parser and attribute
evaluator) that takes the aspect specification and instantiates two
different sets of parameterized transformation rules (i.e., STL
copy rules and App transformation rules, shown separately as #5
and #6 in Figure 1). The pattern instantiation process is similar to
our previous work on building an aspect domain for ObjectPascal
[9]. The STL copy rules make a copy of the original STL
template and weaves in the new concerns by use of the STL-RSL
Binding in the transformation engine. As a result, several different
copies of STL templates will be generated, each of which has one
specific concern weaved into its base definition (shown as #3).
Likewise, the App-RSL Binding transformation modifies the user
application program (shown as #2) based on the App

transformation rules, and generates the new application (shown as
#4) that is able to be compiled and executed along with the
generated STL copies.
The remaining parts of Section 2 will introduce a detailed
discussion of transformation rules used for implementing the
template weaving concepts.
2.3.2 Transformation Rules for Template Weaving
Listing 8 shows the low level RSL specification for weaving a
logging concern into the push_back method in an STL vector
class. Two steps are involved in the weaving process: make a
copy of the vector template class, and insert the logging statement
into appropriate placeholders in the abstract syntax tree. The first
line in the rule snippet establishes the default base language
domain to which the DMS rules are applied (in this case, Visual
C++ 6.0 is used). Pattern log_statement in lines 3 and 4
represents the log statement that will be inserted before the
execution of the push_back method. Pattern
weaved_method_name in lines 6 and 7 defines the name of
the method that will be transformed (i.e., push_back in this
case). Pattern new_template_name in lines 9 and 10 specifies
the new name for the copied vector (e.g., vector_copy). In
DMS, exit functions (i.e. external patterns and functions) are
written in PARLANSE, which is a parallel language for symbolic
expressions. It provides an enriched set of API’s for performing
various operations on the abstract syntax tree. In this example the
external pattern
copy_template_add_log_to_pushback_method is
implemented in PARLANSE cwhich does the actual process of
copying, renaming, and weaving. The external pattern takes four
input parameters: a template declaration to be operated on, a
statement sequence representing the advice, a method name where

Figure 1. Overview of Template Weaving Process

the advice is to be weaved, and a new name for the template copy.
Due to limited space, the PARLANSE code is omitted here (all of
the transformation code, papers, and videos are available on the
GenAWeave project web page at
http://www.cis.uab.edu/gray/Research/GenAWeave). The rule
insert_log_to_template on line 22 triggers the
transformation on the vector class by invoking the specified
external pattern. Notice that there is a condition associated with
this rule (line 30), which describes a constraint stating that the
rule should be applied only once. After applying this rule to the
code fragment (i.e.,vector.h) shown in Listing 1, a new
template class named vector_copy will be generated with the
logging statement inserted at the beginning of the push_back
method (i.e., the automated result is the same as found in Listing
2).

However, due to the low level nature of the rule specification
language, software developers are not expected to write rules in
this manner, rather the aspect language mentioned in section 2.2
and its corresponding binding with the RSL would drive the
weaving. Developers can specify the join point and pointcut using
the aspect specification and underlying implementations would be
then instantiated oblivious to them.

1 default base domain Cpp~VisualCpp6.
2
3 pattern log_statement():
4 statement_seq = "log.add(x);".
5
6 pattern weaved_method_name():
7 identifier = "push_back".
8
9 pattern new_template_name():
10 identifier = "vector_copy".
11
12 external pattern
13 copy_template_add_log_to_pushback_method
14 (td : template_declaration,
15 st : statement_seq,
16 method_name : identifier,
17 template_name : identifier):
18 template_declaration =
19 'copy_template_add_log_to_pushback_method'
20 in domain Cpp~VisualCpp6.
21
22 rule insert_log_to_template
23 (td : template_declaration):
24 template_declaration ->
25 template_declaration
26 = td ->
27 copy_template_add_log_to_pushback_method
28 (td, log_statement(),
29 weaved_method_name(),new_template_name())
30 if td ~=
31 copy_template_add_log_to_pushback_method
32 (td, log_statement(),
33 weaved_method_name(),new_template_name()).
34
35 public ruleset applyrules =
36 { insert_log_to_template }.

Listing 8. DMS transformation rules for weaving
log statement into push_back method

The weaving process is still not complete as the application
program also needs to be updated to reference to this new
vecor_copy instance. The DMS transformation rule specification
for updating the corresponding application program is specified in
Listing 9. Pattern pointcut (line 3) identifies the condition
under which the rule will be applied (e.g., all int vector

declarations). Pattern advice (line 7) defines the name of the
new transformed function (e.g., vector_copy). The external
pattern replace_vector_instance performs the actual
transformation implementation in PARLANSE. After applying
this particular rule to a user application, every instance vector
declared as int will be transformed into an instance of
vector_copy.

1 default base domain Cpp~VisualCpp6.
2
3 pattern pointcut(id : identifier):
4 declaration_statement =
5 "vector<int> \id;".
6
7 pattern advice(id : identifier):
8 declaration_statement =
9 "vector_copy<int> \id;".
10
11 external pattern replace_vector_instance
12 (cd : class_declaration,
13 ds1 : declaration_statement,
14 ds2 : declaration_statement):
15 class_declaration =
16 'replace_vector_instance'
17 in domain Cpp~VisualCpp6.
18
19 rule replace_template_instance
20 (cd : class_declaration,
21 id : identifier):
22 class_declaration ->
23 class_declaration
24 = cd -> replace_vector_instance
25 (cd,pointcut(id),advice(id))
26 if cd ~= replace_vector_instance
27 (cd,pointcut(id),advice(id)).
28
29 public ruleset applyrules =
30 { replace_template_instance }.

Listing 9. DMS transformation rules for updating the
application program

2.4 An application using STL – Internet

Communications Engine
In this subsection we concentrate on verifying the practical usage
of the basic concepts developed in the previous section by
applying it to an open source application, namely the Internet
Communications Engine (ICE). ICE is an object-oriented
middleware platform suitable for use in heterogeneous
environments and supports developments of practical distributed
applications for a wide variety of domains. It provides tools, APIs
and libraries for building object-oriented client server
applications. The reason ICE was chosen to validate the concepts
developed in section 2.1 was primarily due to its extensive usage
of the C++ standard template library. The ICE core package
consists of several hundred C++ classes and is around 155 K
SLOC in size.
Although there are several places in the core ICE library that are
suitable candidates for applying aspect-oriented template
specializations, here we only illustrate the BasicStream class. The
BasicStream class consist of several readers and writers and is
instrumental in implementing several data types (int, float, char,
long, double, string etc) for communicating between the object
streams. Obviously the objects need to be type casted to bytes
before being transmitted as streams. Although this kind of type
casting operation is not considered as a traditional aspect

(contrary to logging, error-handling etc) in the AOP world, but
the fact that this operation cross-cuts the entire stream class
cannot be ignored. The following piece of code exemplifies the
problem.

1 ...
2 IceInternal::BasicStream::write(const
3 vector<Float>& v) {
4 Int sz = static_cast<Int>(v.size());
5 #ifdef ICE_BIG_ENDIAN
6 const Byte* src = reinterpret_cast
7 <const Byte*>(&v[0]) + sizeof(Float) - 1;
8 // writing to the byte stream (omitted)
9 #else
10 memcpy(&b[pos], reinterpret_cast<const
11 Byte*>(&v[0]), sz * sizeof(Float));
12 #endif
13 }
14 ...

Listing 10. Type casting operation for non byte data types

Line 4 and Line 6 illustrates the two cross-cutting concerns which
are scattered throughout the code base and appears 9 times each
for every read and write operation. ICE uses its own user defined
Int data type and needs to know the size of the vector before
converting it to byte streams (Line 4 shows this case). Both these
operations could be abstracted as an aspect and could be present
as a new method in the parent template class. To weave these
kinds of cross-cutting properties, we would use the inter type
declaration mechanism (similar to inter type declaration in
AspectJ), and the code in Listing 11 show the aspect specification
to do this.
1 aspect size_typecast {
2 public Int vectorSize() {
3 return static_cast<Int>(v.size());
4 }
5 public const Byte* srcFloat() {
6 reinterpret_cast<const
7 Byte*>(&v[0]) + sizeof(Float) - 1;
8 }
9 public const Byte* srcDouble() {
10 reinterpret_cast<const
11 Byte*>(&v[0]) + sizeof(Double) - 1;
12 }
13 . . .
14 }

Listing 11. Aspect Specification for weaving size and
type cast operation

Note that the reference in Line 3 and 5 in the source application
should also be updated to point to this new method declaration
within the parent template.

3 ASPECTS IN SCIENTIFIC LIBRARIES
The previous section presented examples that were contrived to
illustrate some of the distinct scoping problems that are associated
during weaving into specific template specializations. In this
section, focus is given towards modularizing open-source libraries
written in the scientific computing domain. The contribution
highlights the crosscutting features on a real case study, and
describes improved modularization using the template weaving

idea. In particular, this section focuses on identified aspects in
Blitz++ [28], a C++ template library that supports high
performance scientific computing.

3.1 Background: Crosscutting in Blitz++
Optimizing performance, while preserving the benefits of
programming language abstractions [27, 24, 19], is a major hurdle
faced in scientific computing. Object-oriented programming
languages (OOPLs) have popularized useful features (e.g.,
inheritance and polymorphism) in the development of complex
scientific problems. However, the performance bottleneck
associated with OOPLs has been a major concern among high-
performance computing (HPC) researchers. Alternatively,
languages such as FORTRAN have dominated the numerical
computing domain, even though the primitive programming
constructs in such languages make applications difficult to
maintain and evolve.

Compiler extensions (e.g., High Performance C++ [12] and High
Performance Java [8]) and scientific libraries (e.g., POOMA [20],
MTL [22], and BLITZ++ [28]) have been developed to extend the
benefits of object-oriented programming to the scientific domain.
In particular, BLITZ++ is a popular scientific package that has
specific abstractions (e.g., arrays, matrices, and tensors) that
support parametric polymorphism through C++ templates. The
goal of the Blitz++ project has been to develop techniques that
enable C++ to compete or exceed the speed of FORTRAN for
numerical computing. Blitz++ arrays offer functionality and
efficiency, but without any language extensions. The Blitz++
library is able to parse and analyze array expressions at compile
time, and perform loop transformations. Blitz++ currently
provides dense vectors and multidimensional arrays, in addition to
matrices, random number generators, and tiny vectors. The
overall size of the Blitz++ library is approximately 115K SLOCs.
Moreover, there are several additional source code directories that
serve as benchmarks and test cases.

Although Blitz++ makes extensive use of templates and generics
for array and vector implementation, the issue addressed in this
section is the ability to apply AOP concepts to a large template
library like Blitz++ using the technique described in section 2.
This section contains a description of some of the array and vector
implementation templates in Blitz++, and identifies several
crosscutting features in the current Blitz++ implementation. The
majority of the section demonstrates the weaving technique using
DMS that was introduced in Section 2. The general approach
could be applied to other languages that support parametric
polymorphism (e.g., Ada and Java 1.5).

The first example (Section 3.2) represents the common case of a
debugging precondition that appears 25 times in the array-
impl.h source header, and in 57 places in resize.cc. An
additional crosscutting feature in array-impl.h is
SetupStorage, which is used for initial memory allocation for
arrays. SetupStorage appears 23 times in both array-impl.h
and resize.cc. The second example (Section 3.3) is based on
redundant assertion checks on the lower and upper bounds of an
array during instantiation. It appears in 46 places in array-
impl.h. This example is similar in concept to the redundant
assertions that were described by Lippert and Lopes in [16].

Section 3.4 examines AOP combined with other generative
programming techniques [6]. In particular, the section explores
the various binary and unary operations on vectors that use
templatized mathematical functions. These functions crosscut the
vector operations. For example, many mathematical functions
(e.g., sin, cos, tan, abs) are repeated in numerous places in both
vecuops.cc and vecbops.cc. Although Blitz++ currently
generates these templates, an alternative process is shown that
uses transformation rules to generate the crosscutting
mathematical functions. In the approach described in Section 3.4,
over 12K SLOCs are generated using just 14 lines of code in a
base template. We have identified six additional aspects in the
Blitz++ library, but space limitations prohibit a complete
discussion.

3.2 Precondition and SetupStorage Aspects
The Blitz++ library has a debugging mode that is enabled by
defining the preprocessor directive BZ_DEBUG. In this mode, an
application runs very slowly primarily because Blitz++ does
several precondition and bounds checking on the array index.
Under this condition, if an error or fault is detected by the system,
the program halts and displays an error message. Listing 12 shows
a sample precondition check for an array implementation. Note
that the rank of the vector influences the precondition to be
checked.

Another aspect that cuts across the array implementation
boundaries is setupStorage. The method is called to allocate
memory for any new array. However, any missing length
arguments will have their value taken from the last argument in
the parameter list. For example, Array<int,3> A(32,64)
will create a 32x64x64 array, which is handled by the routine
setupStorage(). Both the BZPRECONDITION (lines 10 and
20 of Listing 12) and setupStorage (lines 12 and 22) can be
individually considered as two different pieces of advice applied
to the same pointcut (the former as before advice, and the latter as
after advice).

1 template<typename T_expr>
2 _bz_explicit Array
3 (_bz_ArrayExpr<T_expr> expr);
4
5 Array(int length0, int length1,
6 GeneralArrayStorage<N_rank> storage =
7 GeneralArrayStorage<N_rank>())
8 : storage_(storage)
9 {
10 BZPRECONDITION(N_rank >= 2);
11 // implementation code omitted
12 setupStorage(1);
13 }
14
15 Array(int length0, int length1, int length2,
16 GeneralArrayStorage<N_rank> storage =
17 GeneralArrayStorage<N_rank>())
18 : storage_(storage)
19 {
20 BZPRECONDITION(N_rank >= 3);
21 // implementation code omitted
22 setupStorage(2);
23 }
...

Listing 12. Precondition check and setpupStorage in
array implementation

With respect to the aspect language design presented in Section
2.2, Listing 13 contains a simple aspect specification for the
cross-cutting concern shown in Listing 12. The expression
statements in BZPRECONDITION and setupStorage form
part of the before and after advice. The pointcut refers to all
Array constructors within the Array implementation class. The
function call tjp.getArgs().length() will return the
length of the parameter list in the Array constructor. This is a
special construct which is implemented internally by the
PARLANSE external function
generate_paramlist_length defined in Listing 15.

15 aspect InsertBZPreCondition_MemAllocation {
16
17 pointcut ArrayConstuctor():
18 execution(Array<*>::Array(..));
19
20 before(): ArrayConstuctor()
21 { BZPRECONDITION(N_rank
22 >= tjp.getArgs().length());}
23
24 after(): ArrayConstuctor()
25 { setupStorage(
26 tjp.getArgs().length()-1);}}
27 }

Listing 13. Aspect specification for precondition and
memory allocation in templates

The low level RSL implementation used to weave these features
is contained in Listing 14. The parameterized rules
insert_BZPRECONDITION and insert_SetupStorage
are used to insert the before and after advice for the array
implementation. Note that there is a marked similarity between
the two rules, which could be abstracted to form a single rule.
However, the BZPRECONDITION statement is attached before
the body of the array implementation, whereas the
setupStorage statement is attached after the main body. This
is achieved by the patterns BZPRECONDITIONAspect and
SetupStorageAspect. The exit functions (i.e., external
patterns and conditions) are coded in PARLANSE and are used to
compute the value for the storage and rank parameters. This value
is derived from the parameter list of the array constructor (e.g.,
Line 5 in Listing 12) as shown in the external function
generate_paramlist_length in Listing 15. The
expression_list is generated according to the number of
parameters. If the first parameter type is int, and array length is
2, expression statements like (N_rank >= 2) and
setupStorage(1) will be weaved. Part of the code is
commented in italics for easy readability.

The strategy to count the numbers of arguments in a parameter list
is shown in the listing below. The primary search criterion is
based on walking the abstract syntax tree seeking for parameter
declaration list nodes. On successful match, all the children
belonging to the list are enumerated one by one and the counter is
incremented. Finally the total length of the argument list returned
to the caller.

1 default base domain Cpp~VisualCpp6.
2
3 pattern BZPRECONDITION ():
4 identifier_or_template_id = BZPRECONDITION".
5
6 pattern BZPRECONDITIONStmt
7 (p : para_decl_clause):
8 expression_statement =
9 "\BZPRECONDITION \(\)(N_rank >=
10 \ generate_paramlist_length \(\p\));".
11
12 -+ Before advice
13 pattern BZPRECONDITIONAspect
14 (p : para_decl_clause, s : statement_seq):
15 compound_statement =
16 "{\BZPRECONDITIONStmt\(\p\) { \s }} ".
17
18 pattern SetupStorage ():
19 identifier_or_template_id = "setupStorage".
20
21 pattern SetupStorageStmt(p: para_decl_clause):
22 expression_statement =
23 "\SetupStorage \(\)
24 (\generate_paramlist_length \(\p\));".
25
26 -+ After advice
27 pattern SetupStorageAspect
28 (p : para_decl_clause,
29 s : statement_seq):
30 compound_statement =
31 "{ \s \SetupStorageStmt\(\p\) } ".
32
33 external pattern
34 generate_paramlist_length
35 (p : para_decl_clause):
36 INT_LITERAL =
37 ' generate_paramlist_length '
38 in domain Cpp~VisualCpp6.
39
40 external condition
41 para_type_is_int(p : para_decl_clause) =
42 'para_type_is_int'
43 in domain Cpp~VisualCpp6.
44
45 rule insert_SetupStorage
46 (p : para_decl_clause,
47 c : ctor_initializer,
48 s : statement_seq):
49 function_definition -> function_definition
50 = "Array (\p) \c { \s } " ->
51 "Array (\p) \c
52 {\SetupStorageAspect\(\p \, \s\) }"
53 if ~[modsList:statement_seq .s matches
54 "\:statement_seq \SetupStorageAspect\(\p \,
55 \modsList\)"] and para_type_is_int(p).
56
57 rule insert_BZPRECONDITION
58 (p : para_decl_clause,
59 c : ctor_initializer,
60 s : statement_seq):
61 function_definition -> function_definition
62 = "Array (\p) \c { \s } " ->
63 "Array (\p) \c
64 {\ BZPRECONDITIONAspect \(\p \, \s\) }"
65 if ~[modsList:statement_seq .s matches
66 "\:statement_seq \ BZPRECONDITIONAspect
67 \(\p \, \modsList\)"] and
68 para_type_is_int(p).
69
70 public ruleset applyrules =
71 {
72 insert_BZPRECONDITION,
73 insert_SetupStorage
74 }.

Listing 14. Weaving precondition and
storage allocation using RSL

1 (define generate_paramlist_length
2 (lambda Registry:CreatingPattern
3 (value (local (;;
4 // local variable declaration omitted
5);;
6 (;;
7 (= para_decl_list
8 (AST:GetFirstChild arguments:1))
9 // fetch the last parameter from the array parameter list
10 (while (== (AST:GetNodeType para_decl_list)
11 _pp_decl_list)
12 (;; (+= n) //increase parameter count
13 (= para_decl_list
14 (AST:GetFirstChild para_decl_list)
15);;
16)while
17 (= literal_num
18 (AST:CreateNode rep_instance _int_literal))
19 // set the parameter count n to the literal value node
20 (AST:SetNatural literal_num n)
21 (return literal_num)
22);;
23 ...
24)lambda
25)define

Listing 15. PARLANSE function to generate the
conditional parameter value

3.3 Redundant Assertion Checking
Another debugging feature present in Blitz++ checks for the size
or range of the arrays. For example, Listing 16 shows a 4x4 array
instantiation and subsequent allocation of floating point values to
an array index. However, because this is a C-style array, the valid
index ranges are 0..3 and 0..3; hence, it is an error to refer to an
invalid index.

1 int main()
2 {
3 Array<complex<float>, 2> Z(4,4);
4 Z(4,4) = complex<float>(1.0, 0.0);
5 return 0;
6 }

Listing 16. Accessing an invalid array index

1 _bz_bool assertInRange(int BZ_DEBUG_PARAM(i0),
2 int BZ_DEBUG_PARAM(i1)) const
3 {
4 BZPRECHECK(isInRange(i0,i1),
5 "Array index out of range: ("
6 << i0 << ", " << i1 << ")"
7 << endl << "Lower bounds: "
8 << storage_.base() << endl
9 << "Length: " << length_ << endl);\
10 return _bz_true;
11 }

Listing 17. Definition of the assertion function

To detect errors in ranges, each array allocation makes an implicit
call to assertInRange, which checks the lower and upper
bounds of the array. Listing 17 shows the internal implementation
of the assertInRange function in Blitz++.

This particular assertion is defined in all array template
specifications, according to the general pattern shown in Listing
18 (the assertInRange aspect in Lines 5 and 12). However,
note that the number of index parameters passed to the
assertInRange routine implicitly depends on the size of the

TinyVector. For example, as presented in Listing 18, to
allocate a TinyVector of size 1 requires a parameter (i.e.,
index[0]) to be passed to assertInRange. Similarly, for a
vector of size 2, the range will be checked on index[0],
index[1]. This type of array specification is repeated
approximately 46 times in array-impl.h and is context-
dependent on the size of each template container.

1 template<int N_rank2>
2 T_numtype operator()
3 (TinyVector<int,1> index) const
4 {
5 assertInRange(index[0]);
6 return data_[index[0] * stride_[0]];
7 }
8
9 T_numtype operator()
10 (TinyVector<int,2> index) const
11 {
12 assertInRange(index[0], index[1]);
13 return data_[index[0] * stride_[0] +
14 index[1] * stride_[1]];
15 }
16 ...

Listing 18. Redundant assertion check on
base template specification

To avoid the crosscutting assertion checking in every definition of
array implementation, the aspect specification (as defined in
Listing 19) will weave this concern back into the template code.
The operation_func pointcut in this specification refers to
all operation constructors in the array implementation class. The
special construct tjp.getParameterList is internally
mapped to a local parlanse function which returns part of the valid
AST structure observed at this join point.

1 aspect AssertInRange {
2 pointcut operator_func():
3 execution(Array<*>::operator()(..));
4
5 before(): operator_func()
6 {
7 assertInRange(tjp.getParameterList());
8 }

Listing 19. Aspect specification for redundant assertion
checks

In the current effort, aspect mining and removal of the original
crosscutting features was performed manually, although the actual
weaving back into the base code is automated with the illustrated
transformations. Future work will explore aspect mining and
clone detection within the context of templates, but is not a focus
of this paper.

The low level RSL implementation of the above aspect is shown
in Listing 20. The pattern assertInRangeAspect takes
three parameters; namely, the integer literal that specifies the size
of the TinyVector, the vector identifier (i.e., index), and the
statement sequence node where the aspect is to be inserted. The
expression statement pattern assertInRangeStmt is
generated by an externally defined pattern (i.e.,
create_expression_list_for_vectorIds), which
uses an internal PARLANSE specification to generate the
parameters for the assertInRange function.

1 default base domain Cpp~VisualCpp6.
2
3 pattern vectorIdPattern(vectorId: identifier):
4 identifier = "\vectorId".
5
6 external pattern
7 create_expression_list_for_vectorIds
8 (n: INT_LITERAL, vectorIdRoot: identifier):
9 expression_list =
10 'create_expression_list_for_vectorIds'
11 in domain Cpp~VisualCpp6.
12
13 pattern
14 assertInRange_as_id_or_template_id():
15 identifier_or_template_id = "assertInRange".
16
17 pattern assertInRangeStmt
18 (n:INT_LITERAL, vectorId: identifier):
19 expression_statement =
20 "\assertInRange_as_id_or_template_id\(\)
21 (\create_expression_list_for_vectorIds
22 \(\n \,\vectorIdPattern\(\vectorId\)\));".
23
24 pattern assertInRangeAspect(n : INT_LITERAL,
25 vectorId: identifier, s: statement_seq):
26 compound_statement =
27 "{\assertInRangeStmt\(\n\,\vectorId\){\s}}".
28
29 rule insert_assertInRange
30 (n : INT_LITERAL, vectorId : identifier,
31 c : cv_qualifier_seq, s : statement_seq):
32 function_definition -> function_definition
33 = "T_numtype operator()
34 (TinyVector<int,\n> \vectorId) \c { \s } "
35 ->"T_numtype operator()
36 (TinyVector<int,\n> \vectorId) \c
37 {\assertInRangeAspect\(\n \,
38 \vectorId \, \s\)}"
39 if ~[modsList:statement_seq .s matches
40 "\:statement_seq \assertInRangeAspect\
41 (\n \, \vectorId \, \modsList\)"].
42
43 public ruleset applyrules =
44 {insert_assertInRange}.

Listing 20. RSL specification showing weaving of
assertion check to base implementation

3.4 Crosscutting Generic Functions
This sub-section discusses the combination of AOP with other
generative programming techniques [6]. In Blitz++, templates
such as binary and unary operations for arrays and vectors are
synthesized from a code generator implemented in several C++
routines. For consideration in this sub-section, attention is focused
on a specific set of unary vector operations in a template
specification, which are generated to the vecuops.cc source
file in the Blitz++ library. The vecuops.cc file is around 12K
SLOCs in size; however, most of the mathematical operations
(e.g., log, sqrt, sin, floor, fmod) have the same syntactic pattern
structure that can be specified concisely. An analysis of the
generation process revealed that the entire template specification
is essentially a cross-product between the set of defined
mathematical functions (λ) and a base template (β) that represents
the general pattern structure. In other words, the set of
mathematical functions crosscut the entire unary vector general
pattern.

The mathematical functions supported in Blitz++ vectors can be
enumerated as λ

1
,λ

2
,...λ

n
, and the base routine representing

the pattern template structure as β (Listing 21). The code
generated as the cross-product would be λ

1
β + λ

2
β + λ

3
β

(i.e., { λ
1
,λ

2
..λ

n
 } × β). The partial string identifier

OPERATION (highlighted in bold in Listing 21), represents the
locations in the pattern structure where the mathematical methods
need to be weaved to generate the entire template specification
(i.e., the 12k SLOCs in the vecuops.cc file). The concept here
is somewhat different than standard AOP practice, but the idea of
a cross-product between a set of mathematical functions and a
base pattern is germane to the overall process of template
weaving. Although the example provided in this sub-section is
based on vector operations using mathematical functions, similar
situations exist in several other generated template specifications
in the Blitz++ library.

1 template<class P_numtype1>
2 inline
3 _bz_VecExpr<_bz_VecExprUnaryOp<VectorIterConst
4 <P_numtype1>,_bz_OPERATION<P_numtype1> > >
5
6 OPERATION(const Vector<P_numtype1>& d1)
7 {
8 typedef bz_VecExprUnaryOp<VectorIterConst
9 <P_numtype1>,_bz_OPERATION<P_numtype1>>
10 T_expr;
11
12 return
13 _bz_VecExpr<T_expr>(T_expr(d1.begin()));
14 }

Listing 21. Subset of base pattern used to generate the
vector operation template

1 default base domain Cpp~VisualCpp6.
2
3 pattern aspect_op():identifier = "OPERATION".
4 pattern aspect_bz_op():
5 identifier ="_bz_OPERATION" .
6
7 pattern operation1(): identifier ="abs".
8 pattern operation2(): identifier ="acos".
9 pattern operation3(): identifier ="acosh".
10 ...
11
12 external pattern
13 search_aspect_generate_template_code
14 (td : template_declaration,
15 id1: identifier,
16 id2: identifier):
17 template_declaration =
18 'search_aspect_generate_template_code'
19 in domain Cpp~VisualCpp6.
20
21 rule generate_vec_template
22 (td:template_declaration):
23 declaration_seq -> declaration_seq
24 = td ->
25 search_aspect_generate_template_code(td,
26 aspect_op(), aspect_bz_op(), operation1(),
27 operation2(), operation3())
28 if td ~=
29 search_aspect_generate_template_code(td,
30 aspect_op(), aspect_bz_op(), operation1(),
31 operation2(), operation3()).
32
33 public ruleset applyrules =
31 {
32 generate_vec_template
33 }.

Listing 22. Rules showing the concept of applying AOP
with generative programming

The RSL rule describing the weaving of the mathematical
functions with the standard routine is shown in Listing 22. The
right-hand side of the rule specification is an external pattern (i.e.,
search_aspect_generate_template_code in Line 25)
that takes a list of input parameters. The first parameter is the
template pattern definition (β). The second and the third
parameter are the two markers in the base tree that need to be
replaced with the enumerated mathematical operations. The
fourth and subsequent parameters are the set of generic
mathematical functions (operationX()) to be weaved into the
base pattern.

4. RELATED WORK
As noted in the introduction, a discussion of templates and aspects
in AspectC++ within the context of generative programming is
discussed in [17]. The focus of the AspectC++ work is on the
interesting notion of incorporating parametric polymorphism into
the bodies of advice. In contrast, the focus of our contribution is a
deeper discussion of the complimentary idea of weaving
crosscutting features into the implementation of template
libraries. We chose DMS for our experimentation because of our
assurance of the ability to parse all of the complex template
specifications in STL and Blitz++. Many commercial C++
compilers do not implement enough of the ISO/ANSI C++
standard to compile all of Blitz++. The current publically
available version of AspectC++ (0.9pre1) is not able to parse
templates, let alone the complexity found in Blitz++ or the STL.
As an alternative to DMS, there are several other transformation
systems that are available (e.g., ASF+SDF [3], TXL [5]) and
could perhaps offer an alternative platform for the low-level
transformation rules. With respect to the application of program
transformation systems to aspect weaving, an investigation was
described by Fradet and Südholt in an early position paper [7]. In
similar work, Lämmel [15] discusses the implementation of an
aspect weaver for a declarative language using functional meta-
programs.
Within the scientific computing domain, ROSE provides
optimizations using source to source transformation of ASTs for
C++ applications [19]. The transformations are expressed using a
domain-specific language [21]. The type of transformations
performed by ROSE are focused solely on optimization of
scientific libraries, and are not applicable to the kinds of
transformations we advocate in this paper to improve the
modularization of crosscutting concerns.

5. CONCLUSION
Parametric polymorphism provides implementation of common
algorithms and data structures in a type-independent manner. A
template is contained in a single specification, but instantiated in
multiple places within a target application. As shown in Section 2,
applying aspects to templates raises several issues that are in need
of investigation. For example, it is most likely that only a subset
of the instances of a template is related to a specific crosscutting
feature. In such cases, it would be incorrect to weave a concern
blindly into all instances of a template. A capability is needed to
identify and specify those instances that are affected by an aspect,
and to provide appropriate source transformations that make a
copy of the original template and weave on each copy.
The initial focus of the research presented in this paper was to
expose the issues related to weaving concerns into the C++

standard template library. The study proved that the adaptation
has to be made not only to the template definition, but also to the
application program that instantiates the template in multiple
places. The key concept of weaving into template instances was
experimentally validated by applying the concepts to a popular
large-scale open source library for scientific computing. The
scalability issues of such a requirement demanded the availability
of mature parsers capable of handling several thousand lines of
complex template specification. However, there remain several
limitations and open questions to be answered. For example, what
happens if there are static variables in the template definition?
Obviously a blind copy would not work there, so certain static
analysis needs to be done to adapt the approach for such cases.
There needs to be further study and research in this area and this
paper is the first of its kind to raise concerns and issues related to
weaving aspects into template instances.
Given the tendency of concern-based template adaptation, the
contribution presented in this paper can be used for other
programming languages that support parametric polymorphism
(note: DMS provides mature grammars for several dozen
languages). For instance, similar issues will arise with adoption of
generics in Java 1.5, as discussed by Silaghi [23]. Furthermore, a
contribution of the paper demonstrated the ability to modularize
crosscutting concerns in scientific libraries.
The work described in this paper is a modest initial effort that is at
an early stage in terms of the construction of a concrete aspect
language to cover all of the different situations of template
instantiation (as in Table 1). We have developed all of the low-
level transformation rules and associated PARLANSE binaries to
implement all of the crosscutting examples presented in Sections
2 and 3. The future work will involve extending the focus to other
scientific libraries that are implemented in C++ (e.g., POOMA
[20], MTL [22]). An interesting topic that we will investigate is
library-independent aspects that may exist within a specific
domain, such as scientific computing. Because of the availability
of a mature FORTRAN parser within DMS, we plan to perform
aspect mining and modularization efforts on large scale scientific
applications written in FORTRAN that use scientific packages
such as SCALAPACK [2]. Our collaborators on this future work
will be researchers at the High Performance Computing
laboratory at UAB, who helped to pioneer standards within
scientific and parallel programming (such as the MPI standard
[25]).

ACKNOWLEDGEMENTS
Thanks to Carl Wu for fruitful discussions on the “<-” operator
of Section 2.3.

4 REFERENCES
[1] Ira Baxter, Christopher Pidgeon, and Michael Mehlich,

"DMS: Program Transformation for Practical Scalable
Software Evolution," International Conference on Software
Engineering (ICSE), Edinburgh, Scotland, May 2004, pp.
625-634.

[2] L. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A.
Petitet, K. Stanley, D. Walker, and R. Whaley,
"ScaLAPACK Users Guide," Society for Industrial and
Applied Mathematics, 1997,
(http://www.netlib.org/scalapack/slug/).

[3] Mark van den Brand, Jan Heering, Paul Klint, and Pieter
Olivier, "Compiling Rewrite Systems: The ASF+SDF
Compiler," ACM Transactions on Programming Languages
and Systems, July 2002, pp. 334-368.

[4] Luca Cardelli and Peter Wegner, "On Understanding Types,
Data Abstraction, and Polymorphism," ACM Computing
Surveys, 17(4) December 1985, pp. 471-522.

[5] James Cordy, Thomas Dean, Andrew Malton, and Kevin
Schneider, "Source Transformation in Software
Engineering using the TXL Transformation System,"
Special Issue on Source Code Analysis and Manipulation,
Journal of Information and Software Technology (44, 13),
October 2002, pp. 827-837.

[6] Krzysztof Czarnecki and Ulrich Eisenecker, Generative
Programming: Methods, Tools, and Applications, Addison-
Wesley, 2000.

[7] Pascal Fradet and Mario Südholt, "Towards a Generic
Framework for Aspect-Oriented Programming," Third AOP
Workshop, ECOOP '98 Workshop Reader, Springer-Verlag
LNCS 1543, Brussels, Belgium, July 1998, pp. 394-397.

[8] Vladimir Getov, Susan Flynn Hummel, and Sava Mintchev,
"High-performance Parallel Programming in Java:
Exploiting Native Libraries," Concurrency: Practice and
Experience, September-November 1998, pp. 863-872.

[9] Jeff Gray and Suman Roychoudhury, "A Technique for
Constructing Aspect Weavers Using a Program
Transformation System," International Conference on
Aspect-Oriented Software Development (AOSD), Lancaster,
UK, March 22-27, 2004, pp. 36-45.

[10] Bruno Harbulot and John Gurd, "Using AspectJ to Seperate
Concerns in a Parallel Scientific Java Code," International
Conference on Aspect-Oriented Software Development
(AOSD), Lancaster, UK, March 22-27, 2004, pp. 122-131.

[11] John Irwin, Jean-Marc Loingtier, John Gilbert, Gregor
Kiczales, John Lamping, Anurag Mendhekar, and Tatiana
Shpeisman, "Aspect-oriented Programming of Sparse
Matrix Code," International Scientific Computing in
Object-Oriented Parallel Environments (ISCOPE)
Springer-Verlag LNCS 1343, Marina del Ray, CA,
December 1997, pp. 249-256.

[12] Elizabeth Johnson and Dennis Gannon, "HPC++:
Experiments with the Parallel Standard Template Library,"
International Conference on Supercomputing, Vienna,
Austria, July 1997, pp. 124-131.

[13] Nicolai M. Josuttis, The C++ Standard Library: A Tutorial
and Reference, Addison-Wesley, 1999.

[14] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William Griswold, "Getting Started with
AspectJ," Communications of the ACM, October 2001, pp.
59-65.

[15] Ralf Lämmel, "Declarative Aspect-Oriented Programming,"
ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, San Antonio,
Texas, January 1999, pp. 131-146.

[16] Martin Lippert and Cristina Lopes, "A Study on Exception
Detection and Handling Using Aspect-Oriented
Programming," International Conference of Software
Engineering (ICSE), Limmerick, Ireland, June 2000, pp.
418-427.

[17] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk,
"Generic Advice: On the Combination of AOP with

Generative Programming in AspectC++," Generative
Programming and Component Engineering (GPCE),
Springer-Verlag LNCS 3286, Vancouver, BC, October
2004, pp. 55-74.

[18] JSR-000014: Adding Generics to the Java Programming
Language,
http://www.jcp.org/aboutJava/communityprocess/review/jsr014/

[19] Daniel Quinlan, Markus Schordan, Brian Miller, and
Markus Kowarschik, "Parallel Object-Oriented Framework
Optimization," Concurrency: Practice and Experience,
February-March 2004, pp. 293-302.

[20] John V. W. Reynders, Paul J. Hinker, Julian C. Cummings,
Susan R. Atlas, Subhankar Banerjee, William F. Humphrey,
Steve R. Karmesin, Katarzyna Keahey, Marikani Srikant,
and Mary Dell Tholburn, "POOMA: A Framework for
Scientific Simulations of Paralllel Architectures," in
Gregory V. Wilson and Paul Lu, ed., Parallel Programming
Using C++. MIT Press, 1996.

[21] Markus Schordan and Daniel Quinlan, "A Source-To-
Source Architecture for User-Defined Optimizations," Joint
Modular Languages Conference (JMLC), Springer-Verlag
LNCS 2789, Klagenfurt, Austria, August 2003, pp. 214-
223.

[22] Jeremy G. Siek and Andrew Lumsdaine, "The Matrix
Template Library: A Generic Programming Approach to
High Performance Numerical Linear Algebra," Computing
in Object-Oriented Parallel Environments (ISCOPE),
Springer-Verlag LNCS 1505, Santa Fe, NM, December
1998, pp. 59-70.

[23] Raul Silaghi and Alfred Strohmeier, "Better Generative
Programming with Generic Aspects," Second OOPSLA
Workshop on Generative Techniques in the Context of
MDA, Anaheim, CA, October 2003.

[24] Anthony Skjellum, Purushotham Bangalore, Jeff Gray, and
Barrett Bryant, "Reinventing Explicit Parallel Programming
for Improved Engineering of High Performance Computing
Software," ICSE 2004 Workshop: International Workshop
on Software Engineering for High Performance Computing
System (HPCS) Applications, Edinburgh, Scotland, May
2004.

[25] Anthony Skjellum, Ewing Lusk, and William Gropp, "Early
Applications in the Message-Passing Interface (MPI)," The
International Journal of Supercomputer Applications and
High Performance Computing, June 1995, pp. 79-95.

[26] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-
Preikschat, "AspectC++: An Aspect-Oriented Extension to
C++," International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific 2002),
Sydney, Australia, February 2002, pp. 53-60.

[27] Todd Veldhuizen and Dennis Gannon, "Active Libraries:
Rethinking the Roles of Compilers and Libraries," SIAM
Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing, Yorktown Heights,
NY, October 1998.

[28] Todd L. Veldhuizen, "Arrays in Blitz++," 2nd International
Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE'98), Springer-Verlag LNCS 1505,
Santa Fe, NM, December 1998, pp. 223-230.

